252 resultados para quantum corrections to solitons
Resumo:
Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).
Resumo:
LiteSteel beam (LSB) is a cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It is commonly used as floor joists and bearers in residential, industrial and commercial buildings. Design of the LSB is governed by the Australian cold-formed steel structures code, AS/NZS 4600. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, currently available design equations for common cold-formed sections are not directly applicable to the LSB. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Hence experimental and numerical studies were conducted to assess the combined bending and shear behaviour of LSBs. Finite element models of LSBs were developed to simulate their combined bending and shear behaviour and strength of LSBs. They were then validated by comparing the results with available experimental test results and used in a detailed parametric study. The results from experimental and finite element analyses were compared with current AS/NZS 4600 and AS 4100 design rules. Both experimental and numerical studies show that the AS/NZS 4600 design rule based on circular interaction equation is conservative in predicting the combined bending and shear capacities of LSBs. This paper presents the details of the numerical studies of LSBs and the results. In response to the inadequacies of current approaches to designing LSBs for combined bending and shear, two lower bound design equations are proposed in this paper.
Resumo:
In moderate to high sea states, the effectiveness of ship fin stabilizers can severely deteriorate due to nonlinear effects arising from unsteady hydrodynamic characteristics of the fins: dynamic stall. These nonlinear effects take the form of a hysteresis, and they become very significant when the effective angle of attack of the fins exceeds a certain threshold angle. Dynamic stall can result in a complete loss of control action depending on how much the fins exceed the threshold angle. When this is detected, it is common to reduce the gain of the controller that commands the fins. This approach is cautious and tends to reduce performance when the conditions leading to dynamic stall disappear. An alternative approach for preventing the effects while keeping high performance, consists of estimating the effective angle of attack and set a conservative constraint on it as part of the control objectives. In this paper, we investigate the latter approach, and propose the use of a model predictive control (MPC) to prevent the development of these nonlinear effects by considering constraints on both the mechanical angle of the fins and the effective angle of attack.
Resumo:
Indigenous Australians living in remote areas have little access to the Internet and make little use of it. This article investigates the various dimensions of Internet take-up in remote Indigenous communities in Australia and considers the implications for broadband policy. It focuses specifically on the circumstances and experiences of three remote Indigenous communities in central Australia. Residents in these communities provided significant insight into the social, economic and cultural aspects of communications access and use. This evidence is used to examine the drivers and barriers to home Internet for remote Indigenous communities and to discuss a complex set of issues, including: the dynamics of remote living, economic priorities, cultural engagement with technology, and the characteristics of domestic life in remote Indigenous communities.
Resumo:
Validation is an important issue in the development and application of Bayesian Belief Network (BBN) models, especially when the outcome of the model cannot be directly observed. Despite this, few frameworks for validating BBNs have been proposed and fewer have been applied to substantive real-world problems. In this paper we adopt the approach by Pitchforth and Mengersen (2013), which includes nine validation tests that each focus on the structure, discretisation, parameterisation and behaviour of the BBNs included in the case study. We describe the process and result of implementing a validation framework on a model of a real airport terminal system with particular reference to its effectiveness in producing a valid model that can be used and understood by operational decision makers. In applying the proposed validation framework we demonstrate the overall validity of the Inbound Passenger Facilitation Model as well as the effectiveness of the validity framework itself.
Resumo:
Urban agriculture plays an increasingly vital role in supplying food to urban populations. Changes in Information and Communications Technology (ICT) are already driving widespread change in diverse food-related industries such as retail, hospitality and marketing. It is reasonable to suspect that the fields of ubiquitous technology, urban informatics and social media equally have a lot to offer the evolution of core urban food systems. We use communicative ecology theory to describe emerging innovations in urban food systems according to their technical, discursive and social components. We conclude that social media in particular accentuate fundamental social interconnections normally effaced by conventional industrialised approaches to food production and consumption.
Resumo:
Background Patient satisfaction is influenced by the setting in which patients are treated and the employees providing care. However, to date, limited research has explained how health care organizations or nurses influence patient satisfaction. Objectives The purpose of this study was to test the model that service climate would increase the effort and performance of nursing groups and, in turn, increase patient satisfaction. Method This study incorporated data from 156 nurses, 28 supervisors, and 171 patients. A cross-sectional design was utilized to examine the relationship between service climate, nurse effort, nurse performance and patient satisfaction. Structural equation modeling was conducted to test the proposed relationships. Results Service climate was associated with the effort that nurses directed towards technical care and extra-role behaviors. In turn, the effort that nurses exerted predicted their performance, as rated by their supervisors. Finally, task performance was a significant predictor of patient satisfaction. Conclusions This study suggests that both hospital management and nurses play a role in promoting patient satisfaction. By focusing on creating a climate for service, health care managers can improve nursing performance and patient satisfaction with care.
Resumo:
While overall obesity rates are rising, a minority of individuals appear to resist overconsumption and remain lean in spite of an ‘obesogenic’ environment. Studying the factors hypothesised to underpin behaviours associated with resistance to overconsumption may inform weight management strategies in an adverse environment. Trait (BIS-11) and behavioural (response inhibition, GoStop) self control were assessed in the laboratory. Snack food consumption was measured covertly via a sham taste test. Lack of motor control was positively correlated (r = .32, p <. 05) and successful response inhibition was negatively correlated (r = −.35, p <. 05) with snack food intake. Low motor control was also associated with further food intake when satiated (r = .39, p < .01). These relationships were independent of self-reported palatability and perceived reward value of the food. Motor control may be an important factor implicated in ‘mindless’ eating in an environment abundant in palatable, energy-dense snack foods.
Resumo:
Global climate change is one of the most significant environmental impacts at the moment. One central issue for the building and construction industry to address global climate change is the development of credible carbon labelling schemes for building materials. Various carbon labelling schemes have been developed for concrete due to its high contribution to global greenhouse gas (GHG) emissions. However, as most carbon labelling schemes adopt cradle-to-gate as system boundary, the credibility of the eco-label information may not be satisfactory because recent studies show that the use and end-of-life phases can have a significant impact on the life cycle GHG emissions of concrete in terms of carbonation, maintenance and rehabilitation, other indirect emissions, and recycling activities. A comprehensive review on the life cycle assessment of concrete is presented to holistically examine the importance of use and end-of-life phases to the life cycle GHG quantification of concrete. The recent published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication also mandates the use of cradle-to-grave to provide publicly available eco-label information when the use and end-of-life phases of concrete can be appropriately simulated. With the support of Building Information Modelling (BIM) and other simulation technologies, the contribution of use and end-of-life phases to the life cycle GHG emissions of concrete should not be overlooked in future studies.
Resumo:
The decision of Wilson J in Calvert v Nickless Ltd [2004] QSC 449 involves significant questions of interpretation of sections 315 and 317 of the Workcover Queensland Act 1996 (Qld) relating to claims for damages for future economic loss and for gratuitous services.
Resumo:
Railhead is perhaps the highest stressed civil infrastructure due to the passage of heavily loaded wheels through a very small contact patch. The stresses at the contact patch cause yielding of the railhead material and wear. Many theories exist for the prediction of these mechanisms of continuous rails; this process in the discontinuous rails is relatively sparingly researched. Discontinuous railhead edges fail due to accumulating excessive plastic strains. Significant safety concern is widely reported as these edges form part of Insulated Rail Joints (IRJs) in the signalling track circuitry. Since Hertzian contact is not valid at a discontinuous edge, 3D finite element (3DFE) models of wheel contact at a railhead edge have been used in this research. Elastic–plastic material properties of the head hardened rail steel have been experimentally determined through uniaxial monotonic tension tests and incorporated into a FE model of a cylindrical specimen subject to cyclic tension load- ing. The parameters required for the Chaboche kinematic hardening model have been determined from the stabilised hysteresis loops of the cyclic load simulation and imple- mented into the 3DFE model. The 3DFE predictions of the plastic strain accumulation in the vicinity of the wheel contact at discontinuous railhead edges are shown to be affected by the contact due to passage of wheels rather than the magnitude of the loads the wheels carry. Therefore to eliminate this failure mechanism, modification to the contact patch is essential; reduction in wheel load cannot solve this problem.
Resumo:
The social cost of road injury and fatalities is still unacceptable. The driver is often mainly responsible for road crashes, therefore changing the driver behaviour is one of the most important and most challenging priority in road transport. This paper presents three innovative visions that articulate the potential of using Vehicle to Vehicle (V2V) communication for supporting the exchange of social information amongst drivers. We argue that there could be tremendous benefits in socialising cars to influence human driving behaviours for the better and that this aspect is still relevant in the age of looming autonomous cars. Our visions provide theoretical grounding how V2V infrastructure and emerging human–machine interfaces (HMI) could persuade drivers to: (i) adopt better (e.g. greener) driving practices, (ii) reduce drivers aggressiveness towards pro-social driving behaviours, and (iii) reduce risk-taking behaviour in young, particularly male, adults. The visions present simple but powerful concepts that reveal ‘good’ aspects of the driver behaviour to other drivers and make them contagious. The use of self-efficacy, social norms, gamification theories and social cues could then increase the likelihood of a widespread adoption of such ‘good’ driving behaviours.
Resumo:
Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.
Resumo:
The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter. © 2013 Taylor and Francis Group, LLC.
Resumo:
Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications