Indications of energetic consequences of decoherence at short times for scattering from open quantum systems
Data(s) |
2011
|
---|---|
Resumo |
Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2). |
Identificador | |
Publicador |
American Institute of Physics |
Relação |
DOI:10.1063/1.3595401 Chatzidimitriou-Dreismann, C. A., Gray, E. MacA., & Blach, T. P. (2011) Indications of energetic consequences of decoherence at short times for scattering from open quantum systems. AIP Advances, 1(2), 022118-1-022118-11. |
Direitos |
Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. |
Fonte |
School of Chemistry, Physics & Mechanical Engineering; Science & Engineering Faculty |
Tipo |
Journal Article |