352 resultados para interactive mapping
Resumo:
Each year, the Children’s Book Council of Australia (CBCA) administers a number of Book of the Year Awards, including the Eve Pownall Award for Information Books. The books chosen by the CBCA constitute a contemporary canon of Australian children’s literature, and serve to both shape and reflect current educational policies and practices as well as young Australians’ sense of themselves and their nation. This paper reads a selection of award-winning Australian non-fiction children’s literature in the context of colonialism, curriculum, military myths, and Aboriginal perspectives on national history and identity.
Resumo:
Cancer poses an undeniable burden to the health and wellbeing of the Australian community. In a recent report commissioned by the Australian Institute for Health and Welfare(AIHW, 2010), one in every two Australians on average will be diagnosed with cancer by the age of 85, making cancer the second leading cause of death in 2007, preceded only by cardiovascular disease. Despite modest decreases in standardised combined cancer mortality over the past few decades, in part due to increased funding and access to screening programs, cancer remains a significant economic burden. In 2010, all cancers accounted for an estimated 19% of the country's total burden of disease, equating to approximately $3:8 billion in direct health system costs (Cancer Council Australia, 2011). Furthermore, there remains established socio-economic and other demographic inequalities in cancer incidence and survival, for example, by indigenous status and rurality. Therefore, in the interests of the nation's health and economic management, there is an immediate need to devise data-driven strategies to not only understand the socio-economic drivers of cancer but also facilitate the implementation of cost-effective resource allocation for cancer management...
Resumo:
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
Resumo:
Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.
Resumo:
This paper argues that, despite its strengths, the UK Department of Culture, Media and Sport (DCMS) classification of the creative industries contains inconsistencies which need to be addressed to make it fully fit for purpose. It presents an improved methodology which retains the strengths of the DCMS's approach while addressing its deficiencies. We focus on creative intensity: the proportion of total employment within an industry that is engaged in creative occupations.
Resumo:
The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.
Resumo:
In this paper, we propose an approach which attempts to solve the problem of surveillance event detection, assuming that we know the definition of the events. To facilitate the discussion, we first define two concepts. The event of interest refers to the event that the user requests the system to detect; and the background activities are any other events in the video corpus. This is an unsolved problem due to many factors as listed below: 1) Occlusions and clustering: The surveillance scenes which are of significant interest at locations such as airports, railway stations, shopping centers are often crowded, where occlusions and clustering of people are frequently encountered. This significantly affects the feature extraction step, and for instance, trajectories generated by object tracking algorithms are usually not robust under such a situation. 2) The requirement for real time detection: The system should process the video fast enough in both of the feature extraction and the detection step to facilitate real time operation. 3) Massive size of the training data set: Suppose there is an event that lasts for 1 minute in a video with a frame rate of 25fps, the number of frames for this events is 60X25 = 1500. If we want to have a training data set with many positive instances of the event, the video is likely to be very large in size (i.e. hundreds of thousands of frames or more). How to handle such a large data set is a problem frequently encountered in this application. 4) Difficulty in separating the event of interest from background activities: The events of interest often co-exist with a set of background activities. Temporal groundtruth typically very ambiguous, as it does not distinguish the event of interest from a wide range of co-existing background activities. However, it is not practical to annotate the locations of the events in large amounts of video data. This problem becomes more serious in the detection of multi-agent interactions, since the location of these events can often not be constrained to within a bounding box. 5) Challenges in determining the temporal boundaries of the events: An event can occur at any arbitrary time with an arbitrary duration. The temporal segmentation of events is difficult and ambiguous, and also affected by other factors such as occlusions.
Resumo:
A case study based on the experiences of (at the time of writing) Brisbane-based start-up SnowSports Interactive and their plans for global expansion. This case study questions whether SnowSports interactive is ready for global expansion, and if so which country should be its primary target? Once a country has been chosen, how should SnowSports approach and enter the market? This case study prompts business (in particular international business students) to consider a company's readiness in entering a global market, utlising evaluating tools in a wide range of discipline - product, human resources, capital, busines strategy. Furthermore students are asked to match SnowSports' unique characteristics with a country and an entry strategy. Ability to answer questions posed in this case study will demonstrate high level understanding in entrepreneurship and innovation, international business strategy, and cultural awareness; and demonstrate ability in theoretical and framework application
Resumo:
Introduction: Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. Methods: A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. Results: All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. Conclusion: The Snapshot method proved to be a feasible and efficient method of gathering useful
Resumo:
Historical information can be used, in addition to pedigree, traits and genotypes, to map quantitative trait locus (QTL) in general populations via maximum likelihood estimation of variance components. This analysis is known as linkage disequilibrium (LD) and linkage mapping, because it exploits both linkage in families and LD at the population level. The search for QTL in the wild population of Soay sheep on St. Kilda is a proof of principle. We analysed the data from a previous study and confirmed some of the QTLs reported. The most striking result was the confirmation of a QTL affecting birth weight that had been reported using association tests but not when using linkage-based analyses. Copyright © Cambridge University Press 2010.
Resumo:
A novel multiple regression method (RM) is developed to predict identity-by-descent probabilities at a locus L (IBDL), among individuals without pedigree, given information on surrounding markers and population history. These IBDL probabilities are a function of the increase in linkage disequilibrium (LD) generated by drift in a homogeneous population over generations. Three parameters are sufficient to describe population history: effective population size (Ne), number of generations since foundation (T), and marker allele frequencies among founders (p). IBD L are used in a simulation study to map a quantitative trait locus (QTL) via variance component estimation. RM is compared to a coalescent method (CM) in terms of power and robustness of QTL detection. Differences between RM and CM are small but significant. For example, RM is more powerful than CM in dioecious populations, but not in monoecious populations. Moreover, RM is more robust than CM when marker phases are unknown or when there is complete LD among founders or Ne is wrong, and less robust when p is wrong. CM utilises all marker haplotype information, whereas RM utilises information contained in each individual marker and all possible marker pairs but not in higher order interactions. RM consists of a family of models encompassing four different population structures, and two ways of using marker information, which contrasts with the single model that must cater for all possible evolutionary scenarios in CM.
Resumo:
A whole-genome scan was conducted to map quantitative trait loci (QTL) for BSE resistance or susceptibility. Cows from four half-sib families were included and 173 microsatellite markers were used to construct a 2835-cM (Kosambi) linkage map covering 29 autosomes and the pseudoautosomal region of the sex chromosome. Interval mapping by linear regression was applied and extended to a multiple-QTL analysis approach that used identified QTL on other chromosomes as cofactors to increase mapping power. In the multiple-QTL analysis, two genome-wide significant QTL (BTA17 and X/Y ps) and four genome-wide suggestive QTL (BTA1, 6, 13, and 19) were revealed. The QTL identified here using linkage analysis do not overlap with regions previously identified using TDT analysis. One factor that may explain the disparity between the results is that a more extensive data set was used in the present study. Furthermore, methodological differences between TDT and linkage analyses may affect the power of these approaches.
Resumo:
Next generation screens of diverse dimensions such as the Pebble e-paper watch, Google’s Project Glass, Microsoft’s Kinect and IllumiRoom, and large-scale multi-touch screen surface areas, increasingly saturate and diversify the urban mediascape. This paper seeks to contribute to media architecture and interaction design theory by starting to critically examine how these different screen formats are creating a ubiquitous screen mediascape across the city. We introduce next generation personal, domestic, and public screens. The paper critically challenges conventional dichotomies such as local / global, online / offline, private / public, large / small, mobile / static, that have been created in the past to describe some of the qualities and characteristics of interfaces and their usage. More and more scholars recognise that the black and white nature of these dichotomies does not adequately represent the fluid and agile capabilities of many new screen interfaces. With this paper, we hope to illustrate the more nuanced ‘trans-scalar’ qualities of these new urban interactions, that is, ways in which they provide a range functionality, without being locked into either end of a scale.
Resumo:
Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.
Resumo:
The building sector is the dominant consumer of energy and therefore a major contributor to anthropomorphic climate change. The rapid generation of photorealistic, 3D environment models with incorporated surface temperature data has the potential to improve thermographic monitoring of building energy efficiency. In pursuit of this goal, we propose a system which combines a range sensor with a thermal-infrared camera. Our proposed system can generate dense 3D models of environments with both appearance and temperature information, and is the first such system to be developed using a low-cost RGB-D camera. The proposed pipeline processes depth maps successively, forming an ongoing pose estimate of the depth camera and optimizing a voxel occupancy map. Voxels are assigned 4 channels representing estimates of their true RGB and thermal-infrared intensity values. Poses corresponding to each RGB and thermal-infrared image are estimated through a combination of timestamp-based interpolation and a pre-determined knowledge of the extrinsic calibration of the system. Raycasting is then used to color the voxels to represent both visual appearance using RGB, and an estimate of the surface temperature. The output of the system is a dense 3D model which can simultaneously represent both RGB and thermal-infrared data using one of two alternative representation schemes. Experimental results demonstrate that the system is capable of accurately mapping difficult environments, even in complete darkness.