173 resultados para Motion picture theaters
Resumo:
Introduction Markerless motion capture systems are relatively new devices that can significantly speed up capturing full body motion. A precision of the assessment of the finger’s position with this type of equipment was evaluated at 17.30 ± 9.56 mm when compare to an active marker system [1]. The Microsoft Kinect was proposed to standardized and enhanced clinical evaluation of patients with hemiplegic cerebral palsy [2]. Markerless motion capture systems have the potential to be used in a clinical setting for movement analysis, as well as for large cohort research. However, the precision of such system needs to be characterized. Global objectives • To assess the precision within the recording field of the markerless motion capture system Openstage 2 (Organic Motion, NY). • To compare the markerless motion capture system with an optoelectric motion capture system with active markers. Specific objectives • To assess the noise of a static body at 13 different location within the recording field of the markerless motion capture system. • To assess the smallest oscillation detected by the markerless motion capture system. • To assess the difference between both systems regarding the body joint angle measurement. Methods Equipment • OpenStage® 2 (Organic Motion, NY) o Markerless motion capture system o 16 video cameras (acquisition rate : 60Hz) o Recording zone : 4m * 5m * 2.4m (depth * width * height) o Provide position and angle of 23 different body segments • VisualeyezTM VZ4000 (PhoeniX Technologies Incorporated, BC) o Optoelectric motion capture system with active markers o 4 trackers system (total of 12 cameras) o Accuracy : 0.5~0.7mm Protocol & Analysis • Static noise: o Motion recording of an humanoid mannequin was done in 13 different locations o RMSE was calculated for each segment in each location • Smallest oscillation detected: o Small oscillations were induced to the humanoid mannequin and motion was recorded until it stopped. o Correlation between the displacement of the head recorded by both systems was measured. A corresponding magnitude was also measured. • Body joints angle: o Body motion was recorded simultaneously with both systems (left side only). o 6 participants (3 females; 32.7 ± 9.4 years old) • Tasks: Walk, Squat, Shoulder flexion & abduction, Elbow flexion, Wrist extension, Pronation / supination (not in results), Head flexion & rotation (not in results), Leg rotation (not in results), Trunk rotation (not in results) o Several body joint angles were measured with both systems. o RMSE was calculated between signals of both systems. Results Conclusion Results show that the Organic Motion markerless system has the potential to be used for assessment of clinical motor symptoms or motor performances However, the following points should be considered: • Precision of the Openstage system varied within the recording field. • Precision is not constant between limb segments. • The error seems to be higher close to the range of motion extremities.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching with a three-joint robot manipulator using external visual observation. A Deep Q Network (DQN) was demonstrated to perform target reaching after training in simulation. Transferring the network to real hardware and real observation in a naive approach failed, but experiments show that the network works when replacing camera images with synthetic images.
Resumo:
This talk gives an overview of the project "Uncanny Nature", which incoporates a style of animation called Hybrid Stop Motion, that combines physical object armatures with virtual copies. The development of the production pipeline (using a mix of Blender, Dragonframe, Photoscan and Arduino) is discussed, as well as the way that Blender was used throughout the production to visualise, model, animate and composite the elements together.
Resumo:
Head motion (HM) is a well known confound in analyses of functional MRI (fMRI) data. Neuroimaging researchers therefore typically treat HM as a nuisance covariate in their analyses. Even so, it is possible that HM shares a common genetic influence with the trait of interest. Here we investigate the extent to which this relationship is due to shared genetic factors, using HM extracted from resting-state fMRI and maternal and self report measures of Inattention and Hyperactivity-Impulsivity from the Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scales. Our sample consisted of healthy young adult twins (N = 627 (63% females) including 95 MZ and 144 DZ twin pairs, mean age 22, who had mother-reported SWAN; N = 725 (58% females) including 101 MZ and 156 DZ pairs, mean age 25, with self reported SWAN). This design enabled us to distinguish genetic from environmental factors in the association between head movement and ADHD scales. HM was moderately correlated with maternal reports of Inattention (r = 0.17, p-value = 7.4E-5) and Hyperactivity-Impulsivity (r = 0.16, p-value = 2.9E-4), and these associations were mainly due to pleiotropic genetic factors with genetic correlations [95% CIs] of rg = 0.24 [0.02, 0.43] and rg = 0.23 [0.07, 0.39]. Correlations between self-reports and HM were not significant, due largely to increased measurement error. These results indicate that treating HM as a nuisance covariate in neuroimaging studies of ADHD will likely reduce power to detect between-group effects, as the implicit assumption of independence between HM and Inattention or Hyperactivity-Impulsivity is not warranted. The implications of this finding are problematic for fMRI studies of ADHD, as failing to apply HM correction is known to increase the likelihood of false positives. We discuss two ways to circumvent this problem: censoring the motion contaminated frames of the RS-fMRI scan or explicitly modeling the relationship between HM and Inattention or Hyperactivity-Impulsivity
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.
Resumo:
The “distractor-frequency effect” refers to the finding that high-frequency (HF) distractor words slow picture naming less than low-frequency distractors in the picture–word interference paradigm. Rival input and output accounts of this effect have been proposed. The former attributes the effect to attentional selection mechanisms operating during distractor recognition, whereas the latter attributes it to monitoring/decision mechanisms operating on distractor and target responses in an articulatory buffer. Using high-density (128-channel) EEG, we tested hypotheses from these rival accounts. In addition to conducting stimulus- and response-locked whole-brain corrected analyses, we investigated the correct-related negativity, an ERP observed on correct trials at fronto-central electrodes proposed to reflect the involvement of domain general monitoring. The wholebrain ERP analysis revealed a significant effect of distractor frequency at inferior right frontal and temporal sites between 100 and 300-msec post-stimulus onset, during which lexical access is thought to occur. Response-locked, region of interest (ROI) analyses of fronto-central electrodes revealed a correct-related negativity starting 121 msec before and peaking 125 msec after vocal onset on the grand averages. Slope analysis of this component revealed a significant difference between HF and lowfrequency distractor words, with the former associated with a steeper slope on the time windowspanning from100 msec before to 100 msec after vocal onset. The finding of ERP effects in time windows and components corresponding to both lexical processing and monitoring suggests the distractor frequency effect is most likely associated with more than one physiological mechanism.
Resumo:
This article draws on the design and implementation of three mobile learning projects introduced by Flanagan in 2011, 2012 and 2014 engaging a total of 206 participants. The latest of these projects is highlighted in this article. Two other projects provide additional examples of innovative strategies to engage mobile and cloud systems describing how electronic and mobile technology can help facilitate teaching and learning, assessment for learning and assessment as learning, and support communities of practice. The second section explains the theoretical premise supporting the implementation of technology and promulgates a hermeneutic phenomenological approach. The third section discusses mobility, both in terms of the exploration of wearable technology in the prototypes developed as a result of the projects, and the affordances of mobility within pedagogy. Finally the quantitative and qualitative methods in place to evaluate m-learning are explained.