405 resultados para CMOS Image Sensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road surface macrotexture is identified as one of the factors contributing to the surface's skid resistance. Existing methods of quantifying the surface macrotexture, such as the sand patch test and the laser profilometer test, are either expensive or intrusive, requiring traffic control. High-resolution cameras have made it possible to acquire good quality images from roads for the automated analysis of texture depth. In this paper, a granulometric method based on image processing is proposed to estimate road surface texture coarseness distribution from their edge profiles. More than 1300 images were acquired from two different sites, extending to a total of 2.96 km. The images were acquired using camera orientations of 60 and 90 degrees. The road surface is modeled as a texture of particles, and the size distribution of these particles is obtained from chord lengths across edge boundaries. The mean size from each distribution is compared with the sensor measured texture depth obtained using a laser profilometer. By tuning the edge detector parameters, a coefficient of determination of up to R2 = 0.94 between the proposed method and the laser profilometer method was obtained. The high correlation is also confirmed by robust calibration parameters that enable the method to be used for unseen data after the method has been calibrated over road surface data with similar surface characteristics and under similar imaging conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers are reported. The thin graphene-like nano-sheets were produced via the reduction of graphite oxide which was deposited on SAW interdigitated transducers (IDTs). Their sensing performance was assessed towards hydrogen (H2) and carbon monoxide (CO) in a synthetic air carrier gas at room temperature (25 °C) and 40 °C. Raman and X-ray photoelectron spectroscopy (XPS) revealed that the deposited graphite oxide (GO) was not completely reduced creating small, graphitic nanocrystals ∼2.7 nm in size. © 2008 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Hence, there is an urgent need to monitor our infrastructures to prolong their life span, at the same time catering for heavier and faster moving traffics. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for structural health monitoring. The CNTs, a key material in nanotechnology has aroused great interest in the research community due to their remarkable mechanical, electrochemical, piezoresistive and other physical properties. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties when subjected to chemical solutions, to simulate a chemical reaction due to corrosion and real life corrosion experimental tests. The electrical resistance of the sensor electrode was dramatically changed due to corrosion. The novel sensor is expected to effectively detect corrosion in structures based on the measurement of electrical impedances of the CNT composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/nanostructured WO3/SiC Schottky diodes were fabricated and applied for hydrogen gas sensing applications. The nanostructured WO3 films were synthesized from tungsten coated SiC substrates via an acid-etching method using a 1.5 M HNO3 solution for 1 hr, 2 hrs and 3 hrs duration. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. X-ray diffraction analysis revealed that the rate of oxidation of tungsten increases as the duration of acid-etching increases. The devices were tested towards hydrogen gas balanced in air at different temperatures from 25°C to 200°C. At 200°C, voltage shifts of 0.45 V, 0.93 V and 2.37 V were recorded for devices acid-etched for 1 hr, 2 hrs and 3 hrs duration, respectively upon exposure to 1% hydrogen, under a constant forward bias current of 500 µA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed digital image registration program for a MC 68000 based fundus image processing system (FIPS). FIPS not only is capable of executing typical image processing algorithms in spatial as well as Fourier domain, the execution time for many operations has been made much quicker by using a hybrid of "C", Fortran and MC6000 assembly languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the feasibility of the application of an Imputer in a multiple choice answer sheet marking system based on image processing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a key based generic model for digital image watermarking. The model aims at addressing an identified gap in the literature by providing a basis for assessing different watermarking requirements in various digital image applications. We start with a formulation of a basic watermarking system, and define system inputs and outputs. We then proceed to incorporate the use of keys in the design of various system components. Using the model, we also define a few fundamental design and evaluation parameters. To demonstrate the significance of the proposed model, we provide an example of how it can be applied to formally define common attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal-degrading speckle is one factor that can reduce the quality of optical coherence tomography images. We demonstrate the use of a hierarchical model-based motion estimation processing scheme based on an affine-motion model to reduce speckle in optical coherence tomography imaging, by image registration and the averaging of multiple B-scans. The proposed technique is evaluated against other methods available in the literature. The results from a set of retinal images show the benefit of the proposed technique, which provides an improvement in signal-to-noise ratio of the square root of the number of averaged images, leading to clearer visual information in the averaged image. The benefits of the proposed technique are also explored in the case of ocular anterior segment imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.