482 resultados para Avant, Jason
Resumo:
This paper presents a guidance approach for aircraft in periodic inspection tasks. The periodic inspection task involves flying to a series of desired fixed points of inspection with specified attitude requirements so that requirements for downward looking sensors, such as cameras, are achieved. We present a solution using a precision guidance law and a bank turn dynamics model. High fidelity simulation studies illustrate the effectiveness of this approach under both ideal (nil-wind) and non-ideal (wind) conditions.
Resumo:
Fixed-wing aircraft equipped with downward pointing cameras and/or LiDAR can be used for inspecting approximately piecewise linear assets such as oil-gas pipelines, roads and power-lines. Automatic control of such aircraft is important from a productivity and safety point of view (long periods of precision manual flight at low-altitude is not considered reasonable from a safety perspective). This paper investigates the effect of any unwanted coupling between guidance and autopilot loops (typically caused by unmodeled delays in the aircraft’s response), and the specific impact of any unwanted dynamics on the performance of aircraft undertaking inspection of piecewise linear corridor assets (such as powerlines). Simulation studies and experimental flight tests are used to demonstrate the benefits of a simple compensator in mitigating the unwanted lateral oscillatory behaviour (or coupling) that is caused by unmodeled time constants in the aircraft dynamics.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, traditionally employ Bank-to-Turn maneuvers to change heading and thus direction of travel. Commonly overlooked is the effect these maneuvers have on downward facing body fixed sensors, which as a result of bank, point away from the feature during turns. By adopting Skid-to-Turn maneuvers, the aircraft is able change heading whilst maintaining wings level flight, thus allowing body fixed sensors to maintain a downward facing orientation. Eliminating roll also helps to improve data quality, as sensors are no longer subjected to the swinging motion induced as they pivot about an axis perpendicular to their line of sight. Traditional tracking controllers that apply an indirect approach of capturing ground based data by flying directly overhead can also see the feature off center due to steady state pitch and roll required to stay on course. An Image Based Visual Servo controller is developed to address this issue, allowing features to be directly tracked within the image plane. Performance of the proposed controller is tested against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to simulate the field of view of a body fixed camera.
Resumo:
Power systems in many countries are stressed towards their stability limit. If these stable systems experience any unexpected serious contingencies, or disturbances, there is a significant risk of instability, which may lead to wide-spread blackout. Frequency is a reliable indicator for such instability condition exists on the power system; therefore under-frequency load shedding technique is used to stable the power system by curtail some load. In this paper, the SFR-UFLS model redeveloped to generate optimal load shedding method is that optimally shed load following one single particular contingency event. The proposed optimal load shedding scheme is then tested on the 39-bus New England test system to show the performance against random load shedding scheme.
Resumo:
Given global demand for new infrastructure, governments face substantial challenges in funding new infrastructure and simultaneously delivering Value for Money (VfM). As background to this challenge, a brief review is given of current practice in the selection of major public sector infrastructure in Australia, along with a review of the related literature concerning the Multi-Attribute Utility Approach (MAUA) and the effect of MAUA on the role of risk management in procurement selection. To contribute towards addressing the key weaknesses of MAUA, a new first-order procurement decision making model is mentioned. A brief summary is also given of the research method and hypothesis used to test and develop the new procurement model and which uses competition as the dependent variable and as a proxy for VfM. The hypothesis is given as follows: When the actual procurement mode matches the theoretical/predicted procurement mode (informed by the new procurement model), then actual competition is expected to match optimum competition (based on actual prevailing capacity vis-à-vis the theoretical/predicted procurement mode) and subject to efficient tendering. The aim of this paper is to report on progress towards testing this hypothesis in terms of an analysis of two of the four data components in the hypothesis. That is, actual procurement and actual competition across 87 road and health major public sector projects in Australia. In conclusion, it is noted that the Global Financial Crisis (GFC) has seen a significant increase in competition in public sector major road and health infrastructure and if any imperfections in procurement and/or tendering are discernible, then this would create the opportunity, through the deployment of economic principles embedded in the new procurement model and/or adjustments in tendering, to maintain some of this higher level post-GFC competition throughout the next business cycle/upturn in demand including private sector demand. Finally, the paper previews the next steps in the research with regard to collection and analysis of data concerning theoretical/predicted procurement and optimum competition.
Resumo:
This article presents a novel approach to confidentiality violation detection based on taint marking. Information flows are dynamically tracked between applications and objects of the operating system such as files, processes and sockets. A confidentiality policy is defined by labelling sensitive information and defining which information may leave the local system through network exchanges. Furthermore, per application profiles can be defined to restrict the sets of information each application may access and/or send through the network. In previous works, we focused on the use of mandatory access control mechanisms for information flow tracking. In this current work, we have extended the previous information flow model to track network exchanges, and we are able to define a policy attached to network sockets. We show an example application of this extension in the context of a compromised web browser: our implementation detects a confidentiality violation when the browser attempts to leak private information to a remote host over the network.
Resumo:
This paper describes a vision-based airborne collision avoidance system developed by the Australian Research Centre for Aerospace Automation (ARCAA) under its Dynamic Sense-and-Act (DSA) program. We outline the system architecture and the flight testing undertaken to validate the system performance under realistic collision course scenarios. The proposed system could be implemented in either manned or unmanned aircraft, and represents a step forward in the development of a “sense-and-avoid” capability equivalent to human “see-and-avoid”.
Resumo:
Web 2.0 technology and concepts are being used increasingly by organisations to enhance knowledge, efficiency, engagement and reputation. Understanding the concepts of Web 2.0, its characteristics, and how the technology and concepts can be adopted, is essential to successfully reap the potential benefits. In fact, there is a debate about using the Web 2.0 idiom to refer to the concept behind it; however, this term is widely used in literature as well as in industry. In this paper, the definition of Web 2.0 technology, its characteristics and the attributes, will be presented. In addition, the adoption of such technology is further explored through the presentation of two separate case examples of Web 2.0 being used: to enhance an enterprise; and to enhance university teaching. The similarities between these implementations are identified and discussed, including how the findings point to generic principles of adoption.
Resumo:
In the current economy, knowledge has been recognized to be a valuable organisational asset, a crucial factor that aids organisations to succeed in highly competitive environments. Many organisations have begun projects and special initiatives aimed at fostering better knowledge sharing amongst their employees. Not surprisingly, information technology (IT) has been a central element of many of these projects and initiatives, as the potential of emerging information technologies such as Web 2.0 for enabling the process of managing organisational knowledge is recognised. This technology could be used as a collaborative system for knowledge management (KM) within enterprises. Enterprise 2.0 is the application of Web 2.0 in an organisational context. Enterprise 2.0 technologies are web-based social software that facilitate collaboration, communication and information flow in a bidirectional manner: an essential aspect of organisational knowledge management. This chapter explains how Enterprise 2.0 technologies (Web 2.0 technologies within organisations) can support knowledge management. The chapter also explores how such technologies support the codifying (technology-centred) and social network (people-centred) approaches of KM, towards bridging the current gap between these two approaches.