810 resultados para mobility control routing
Resumo:
The research described in this paper is directed toward increasing productivity of draglines through automation. In particular, it focuses on the swing-to-dump, dump, and return-to-dig phases of the dragline operational cycle by developing a swing automation system. In typical operation the dragline boom can be in motion for up to 80% of the total cycle time. This provides considerable scope for improving cycle time through automated or partially automated boom motion control. This paper describes machine vision based sensor technology and control algorithms under development to solve the problem of continuous real time bucket location and control. Incorporation of this capability into existing dragline control systems will then enable true automation of dragline swing and dump operations.
Resumo:
This paper, which serves as an introduction to the mini-symposium on Real-Time Vision, Tracking and Control, provides a broad sketch of visual servoing, the application of real-time vision, tracking and control for robot guidance. It outlines the basic theoretical approaches to the problem, describes a typical architecture, and discusses major milestones, applications and the significant vision sub-problems that must be solved.
Resumo:
This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
Describes how many of the navigation techniques developed by the robotics research community over the last decade may be applied to a class of underground mining vehicles (LHDs and haul trucks). We review the current state-of-the-art in this area and conclude that there are essentially two basic methods of navigation applicable. We describe an implementation of a reactive navigation system on a 30 tonne LHD which has achieved full-speed operation at a production mine.
Resumo:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.
Resumo:
This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.
Resumo:
This paper considers the pros and cons of using Behavioural cloning for the development of low-level helicopter automation modules. Over the course of this project several Behavioural cloning approaches have been investigated. The results of the most effective Behavioural cloning approach are then compared to PID modules designed for the same aircraft. The comparison takes into consideration development time, reliability, and control performance. It has been found that Behavioural cloning techniques employing local approximators and a wide state-space coverage during training can produce stabilising control modules in less time than tuning PID controllers. However, performance and reliabity deficits have been found to exist with the Behavioural Cloning, attributable largely to the time variant nature of the dynamics due to the operating environment, and the pilot actions being poor for teaching. The final conclusion drawn here is that tuning PID modules remains superior to behavioural cloning for low-level helicopter automation.
Resumo:
Traditional approaches to joint control required accurate modelling of the system dynamic of the plant in question. Fuzzy Associative Memory (FAM) control schemes allow adequate control without a model of the system to be controlled. This paper presents a FAM based joint controller implemented on a humanoid robot. An empirically tuned PI velocity control loop is augmented with this feed forward FAM, with considerable reduction in joint position error achieved online and with minimal additional computational overhead.
Resumo:
The Series Elasic Actuator has been proposed as a method for providing safe force or torque based acutation for robots that interact with humans. In this paper we look at some outstanding issues in the implementation and control of Series Elastic Actuators. The study addresses issues in making the Series Elastic Actuator respond effectively in the presence of physical difficulties such as restriction, using a computation efficient controller. The improvement over previous implementations is achieved by treating the motor as a velocity source to the elastic element, rather than as a torque source.
Resumo:
The aim of this case-control study of 617 children was to investigate early childhood caries (ECC) risk indicators in a non-fluoridated region in Australia. ECC cases were recruited from childcare facilities, public hospitals and private specialist clinics to source children from different socioeconomic backgrounds. Non-ECC controls were recruited from the same childcare facilities. A multinomial logistic modelling approach was used for statistical analysis. The results showed that a large percentage of children tested positive for Streptococcus mutans if their mothers also tested positive. A common risk indicator found in ECC children from childcare facilities and public hospitals was visible plaque (OR 4.1, 95% CI 1.0-15.9, and OR 8.7, 95% CI 2.3-32.9, respectively). Compared to ECC-free controls, the risk indicators specific to childcare cases were enamel hypoplasia (OR 4.2, 95% CI 1.0-18.3), difficulty in cleaning child's teeth (OR 6.6, 95% CI 2.2-19.8), presence of S. mutans (OR 4.8, 95% CI 0.7-32.6), sweetened drinks (OR 4.0, 95% CI 1.2-13.6) and maternal anxiety (OR 5.1, 95% CI 1.1-25.0). Risk indicators specific to public hospital cases were S. mutans presence in child (OR 7.7, 95% CI 1.3-44.6) or mother (OR 8.1, 95% CI 0.9-72.4), ethnicity (OR 5.6, 95% CI 1.4-22.1), and access of mother to pension or health care card (OR 20.5, 95% CI 3.5-119.9). By contrast, a history of chronic ear infections was found to be protective for ECC in childcare children (OR 0.28, 95% CI 0.09-0.82). The biological, socioeconomic and maternal risk indicators demonstrated in the present study can be employed in models of ECC that can be usefully applied for future longitudinal studies.
Resumo:
The GuRoo is a 1.2 m tall, 23 degree of freedom humanoid constructed at the University of Queensland for research into humanoid robotics. The key challenge being addressed by the GuRoo project is the development of appropriate learning strategies for control and coordination of the robot's many joints. The development of learning strategies is seen as a way to side-step the inherent intricacy of modeling a multi-DOF biped robot. This paper outlines the approach taken to generate an appropriate control scheme for the joints of the GuRoo. The paper demonstrates the determination of local feedback control parameters using a genetic algorithm. The feedback loop is then augmented by a predictive modulator that learns a form of feed-forward control to overcome the irregular loads experienced at each joint during the gait cycle. The predictive modulator is based on the CMAC architecture. Results from tests on the GuRoo platform show that both systems provide improvements in stability and tracking of joint control.
Resumo:
Globally, the main contributors to morbidity and mortality are chronic diseases, including cardiovascular disease and diabetes. Chronic diseases are costly and partially avoidable, with around sixty percent of deaths and nearly fifty percent of the global disease burden attributable to these conditions. By 2020, chronic illnesses will likely be the leading cause of disability worldwide. Existing health care systems, both national and international, that focus on acute episodic health conditions, cannot address the worldwide transition to chronic illness; nor are they appropriate for the ongoing care and management of those already afflicted with chronic diseases. International and Australian strategic planning documents articulate similar elements to manage chronic disease; including the need for aligning sectoral policies for health, forming partnerships and engaging communities in decision-making. The Australian National Chronic Disease Strategy focuses on four core areas for managing chronic disease; prevention across the continuum, early detection and treatment, integrated and coordinated care, and self-management. Such a comprehensive approach incorporates the entire population continuum, from the ‘healthy’, to those with risk factors, through to people suffering from chronic conditions and their sequelae. This chapter examines comprehensive approach to the prevention, management and care of the population with non-communicable, chronic diseases and communicable diseases. It analyses models of care in the context of need, service delivery options and the potential to prevent or manage early intervention for chronic and communicable diseases. Approaches to chronic diseases require integrated approaches that incorporate interventions targeted at both individuals and populations, and emphasise the shared risk factors of different conditions. Communicable diseases are a common and significant contributor to ill health throughout the world. In many countries, this impact has been minimised by the combined efforts of preventative health measures and improved treatment of infectious diseases. However in underdeveloped nations, communicable diseases continue to contribute significantly to the burden of disease. The aim of this chapter is to outline the impact that chronic and communicable diseases have on the health of the community, the public health strategies that are used to reduce the burden of those diseases and the old and emerging risks to public health from infectious diseases.
Resumo:
Current-voltage (I-V) curves of Poly(3-hexyl-thiophene) (P3HT) diodes have been collected to investigate the polymer hole-dominated charge transport. At room temperature and at low electric fields the I-V characteristic is purely Ohmic whereas at medium-high electric fields, experimental data shows that the hole transport is Trap Dominated - Space Charge Limited Current (TD-SCLC). In this regime, it is possible to extract the I-V characteristic of the P3HT/Al junction showing the ideal Schottky diode behaviour over five orders of magnitude. At high-applied electric fields, holes’ transport is found to be in the trap free SCLC regime. We have measured and modelled in this regime the holes’ mobility to evaluate its dependence from the electric field applied and the temperature of the device.
Resumo:
The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.