194 resultados para Next-Generation Sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main issues related to control of energy and matter in hierarchical low-temperature plasma-solid systems used in nanoscale synthesis and processing are critically examined. A conceptual approach to identify the most effective carriers and transport mechanisms of energy and matter at the nano- and subnanometer scales in plasma-aided nanofabrication is proposed. This approach is highly relevant to the envisaged energy- and matter-efficient plasma-based production of the next-generation advanced nanomaterials for applications in the energy, environment, food, water, health, and security technologies critically needed for a sustainable future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices. © 2011 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The possibility for the switch-over of the growth mode from a continuous network to unidirectional arrays of well-separated, self-organized, vertically oriented graphene nanosheets has been demonstrated using a unique, yet simple plasma-based approach. The process enables highly reproducible, catalyst-free synthesis of arrays of graphene nanosheets with reactive open graphitic edges facing upwards. Effective control over the nanosheet length, number density, and the degree of alignment along the electric field direction is achieved by a simple variation of the substrate bias. These results are of interest for environment-friendly fabrication of next-generation nanodevices based on three-dimensional, ordered self-organized nanoarrays of active nanostructures with very large surface areas and aspect ratios, highly reactive edges, and controlled density on the substrate. Our simple and versatile plasma-based approach paves the way for direct integration of such nanoarrays directly into the Si-based nanodevice platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 °C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To overcome major problems associated with insufficient incorporation of nitrogen in hydrogenated amorphous silicon nitride (a-SiNx:H) nanomaterials, which in turn impedes the development of controlled-bandgap nanodevices, here we demonstrate the possibility to achieve effective bandgap control in a broad range by using high-density inductively coupled plasmas. This achievement is related to the outstanding dissociation ability of such plasmas. It is shown that the compositional, structural, optical, and morphological properties of the synthesized a-SiNx:H nanomaterials can be effectively tailored through the manipulation of the flow rate ratio of the silane to nitrogen gases X. In particular, a wide bandgap of 5.21 eV can be uniquely achieved at a low flow rate ratio of the nitrogen to silane gas of 1.0, whereas typically used values often exceed 20.0. These results are highly-relevant to the development of the next-generation nanodevices that rely on the effective control of the functional nano-layer bandgap energies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on ab initio numerical simulations of the effect of Co and Cu dopings on the electronic structure and optical properties of ZnO, pursued to develop diluted magnetic semiconductors vitally needed for spintronic applications. The simulations are based upon the Perdew-Burke-Enzerh generalized gradient approximation on the density functional theory. It is revealed that the electrons with energies close to the Fermi level effectively transfer only between Cu and Co ions which substitute Zn atoms, and are located in the neighbor sites connected by an O ion. The simulation results are consistent with the experimental observations that addition of Cu helps achieve stable ferromagnetism of Co-doped ZnO. It is shown that simultaneous insertion of Co and Cu atoms leads to smaller energy band gap, redshift of the optical absorption edge, as well as significant changes in the reflectivity, dielectric function, refractive index, and electron energy loss function of ZnO as compared to the doping with either Co or Cu atoms. These highly unusual optical properties are explained in terms of the computed electronic structure and are promising for the development of the next-generation room-temperature ferromagnetic semiconductors for future spintronic devices on the existing semiconductor micromanufacturing platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size-uniform Si nanodots (NDs) are synthesized on an AlN buffer layer at low Si(111) substrate temperatures using inductively coupled plasma-assisted magnetron sputtering deposition. High-resolution electron microscopy reveals that the sizes of the Si NDs range from 9 to 30 nm. Room-temperature photoluminescence (PL) spectra indicate that the energy peak shifts from 738 to 778 nm with increasing the ND size. In this system, the quantum confinement effect is fairly strong even for relatively large (up to 25 nm in diameter) NDs, which is promising for the development of the next-generation all-Si tandem solar cells capable of effectively capturing sunlight photons with the energies between 1.7 (infrared: large NDs) and 3.4 eV (ultraviolet: small NDs). The strength of the resulting electron confinement in the Si/AlN ND system is evaluated and justified by analyzing the measured PL spectra using the ionization energy theory approximation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combination of laser plasma ablation and strain control in CdO/ZnO heterostructures is used to produce and stabilize a metastable wurtzite CdO nanophase. According to the Raman selection rules, this nanophase is Raman-active whereas the thermodynamically preferred rocksalt phase is inactive. The wurtzite-specific and thickness/strain-dependent Raman fingerprints and phonon modes are identified and can be used for reliable and inexpensive nanophase detection. The wurtzite nanophase formation is also confirmed by x-ray diffractometry. The demonstrated ability of the metastable phase and phonon mode control in CdO/ZnO heterostructures is promising for the development of next-generation light emitting sources and exciton-based laser diodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Animal and human infection with multiple parasite species is the norm rather than the exception, and empirical studies and animal models have provided evidence for a diverse range of interactions among parasites. We demonstrate how an optimal control strategy should be tailored to the pathogen community and tempered by species-level knowledge of drug sensitivity with use of a simple epidemiological model of gastro-intestinal nematodes. Methods We construct a fully mechanistic model of macroparasite co-infection and use it to explore a range of control scenarios involving chemotherapy as well as improvements to sanitation. Results Scenarios are presented whereby control not only releases a more resistant parasite from antagonistic interactions, but risks increasing co-infection rates, exacerbating the burden of disease. In contrast, synergisms between species result in their becoming epidemiologically slaved within hosts, presenting a novel opportunity for controlling drug resistant parasites by targeting co-circulating species. Conclusions Understanding the effects on control of multi-parasite species interactions, and vice versa, is of increasing urgency in the advent of integrated mass intervention programmes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterojunction organic photovoltaics have been the subject of intensive academic interest over the past two decades, and significant commercial efforts have been directed towards this area with the vision of developing the next generation of low-cost solar cells. Materials development has played a vital role in the dramatic improvement of organic solar cell performance in recent years, and this is driven primarily by the advancement of p-type semiconductors as donor materials. With the highest performing solar cells today dominated by acceptors based on members of the fullerene family, much less attention has been devoted to other classes of n-type acceptors. In this review, we will provide an overview of the progress in the synthesis, characterization and implementation of the various classes of non-fullerenebased n-type organic acceptors for photovoltaic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is a case about family business succession. Because many successions fail, the 'problem of succession' is a key issue in the family business field (see Aronoff 1998; Bird eta/. 2002; Dyer & Sanchez 1998; Sharma 2004; Zalu·a & Sharma 2004). Indeed, from the non-family business literature, we know one third of relay successions - like this case where there is an identified successor - will fail, with the prospective CEO leaving before succeeding the incumbent CEO (Cmmella & Shen 2001). Research on next generation family business members is limited. Successor ath·ibutes (Chrisman, Chua & Sharma 1998; Sharma & Rao 2000), as well as various characteristics such as socialisation (Garcia-Aivmez, L6pez-Sintas & Gonzalvo 2002) a11d gender (Haberman & Danes 2007; Vera & Dean 2005) have all been considered to play a role. So too have successor intentions (Stavrou & Swiercz 1998), motivation (Le Breton-Miller, Miller & Steier 2004), commitment (Sharma & Irving 2005) and transformation from follower to leadership (Cater & Justis 2009). In this case, by outlining the socialisation of the successors, explanations of their motivations for joining a11d their current employment we can begin to see some of the underlying mechanisms at work motivating the next generation to join and stay in the family business.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In today’s world of information-driven society, many studies are exploring usefulness and ease of use of the technology. The research into personalizing next-generation user interface is also ever increasing. A better understanding of factors that influence users’ perception of web search engine performance would contribute in achieving this. This study measures and examines how users’ perceived level of prior knowledge and experience influence their perceived level of satisfaction of using the web search engines, and how their perceived level of satisfaction affects their perceived intention to reuse the system. 50 participants from an Australian university participated in the current study, where they performed three search tasks and completed survey questionnaires. A research model was constructed to test the proposed hypotheses. Correlation and regression analyses results indicated a significant correlation between (1) users’ prior level of experience and their perceived level of satisfaction in using the web search engines, and (2) their perceived level of satisfaction in using the systems and their perceived intention to reuse the systems. A theoretical model is proposed to illustrate the causal relationships. The implications and limitations of the study are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The noble idea of studying seminal works to ‘see what we can learn’ has turned in the 1990s into ‘let’s see what we can take’ and in the last decade a more toxic derivative ‘what else can’t we take’. That is my observation as a student of architecture in the 1990s, and as a practitioner in the 2000s. In 2010, the sense that something is ending is clear. The next generation is rising and their gaze has shifted. The idea of classification (as a means of separation) was previously rejected by a generation of Postmodernists; the usefulness of difference declined. It’s there in the presence of plurality in the resulting architecture, a decision to mine history and seize in a willful manner. This is a process of looking back but never forward. It has been a mono-culture of absorption. The mono-culture rejected the pursuit of the realistic. It is a blanket suffocating all practice of architecture in this country from the mercantile to the intellectual. Independent reviews of Australia’s recent contributions to the Venice Architecture Biennales confirm the malaise. The next generation is beginning to reconsider classification as a means of unification. By acknowledging the characteristics of competing forces it is possible to bring them into a state of tension. Seeking a beautiful contrast is a means to a new end. In the political setting, this is described by Noel Pearson as the radical centre[1]. The concept transcends the political and in its most essential form is a cultural phenomenon. It resists the compromised position and suggests that we can look back while looking forward. The radical centre is the only demonstrated opportunity where it is possible to pursue a realistic architecture. A realistic architecture in Australia may be partially resolved by addressing our anxiety of permanence. Farrelly’s built desires[2] and Markham’s ritual demonstrations[3] are two ways into understanding the broader spectrum of permanence. But I think they are downstream of our core problem. Our problem, as architects, is that we are yet to come to terms with this place. Some call it landscape others call it country. Australian cities were laid out on what was mistaken for a blank canvas. On some occasions there was the consideration of the landscape when it presented insurmountable physical obstacles. The architecture since has continued to work on its piece of a constantly blank canvas. Even more ironic is the commercial awards programs that represent a claim within this framework but at best can only establish a dialogue within itself. This is a closed system unable to look forward. It is said that Melbourne is the most European city in the southern hemisphere but what is really being described there is the limitation of a senseless grid. After all, if Dutch landscape informs Dutch architecture why can’t the Australian landscape inform Australian architecture? To do that, we would have to acknowledge our moribund grasp of the meaning of the Australian landscape. Or more precisely what Indigenes call Country[4]. This is a complex notion and there are different ways into it. Country is experienced and understood through the senses and seared into memory. If one begins design at that starting point it is not unreasonable to think we can arrive at an end point that is a counter trajectory to where we have taken ourselves. A recent studio with Masters students confirmed this. Start by finding Country and it would be impossible to end up with a building looking like an Aboriginal man’s face. To date architecture in Australia has overwhelmingly ignored Country on the back of terra nullius. It can’t seem to get past the picturesque. Why is it so hard? The art world came to terms with this challenge, so too did the legal establishment, even the political scene headed into new waters. It would be easy to blame the budgets of commerce or the constraints of program or even the pressure of success. But that is too easy. Those factors are in fact the kind of limitations that opportunities grow out of. The past decade of economic plenty has, for the most part, smothered the idea that our capitals might enable civic settings or an architecture that is able to looks past lot line boundaries in a dignified manner. The denied opportunities of these settings to be prompted by the Country they occupy is criminal. The public realm is arrested in its development because we refuse to accept Country as a spatial condition. What we seem to be able to embrace is literal and symbolic gestures usually taking the form of a trumped up art installations. All talk – no action. To continue to leave the public realm to the stewardship of mercantile interests is like embracing derivative lending after the global financial crisis.Herein rests an argument for why we need a resourced Government Architect’s office operating not as an isolated lobbyist for business but as a steward of the public realm for both the past and the future. New South Wales is the leading model with Queensland close behind. That is not to say both do not have flaws but current calls for their cessation on the grounds of design parity poorly mask commercial self interest. In Queensland, lobbyists are heavily regulated now with an aim to ensure integrity and accountability. In essence, what I am speaking of will not be found in Reconciliation Action Plans that double as business plans, or the mining of Aboriginal culture for the next marketing gimmick, or even discussions around how to make buildings more ‘Aboriginal’. It will come from the next generation who reject the noxious mono-culture of absorption and embrace a counter trajectory to pursue an architecture of realism.