585 resultados para Near-Duplicate Detection
Resumo:
The modal strain energy method, which depends on the vibration characteristics of the structure, has been reasonably successful in identifying and localising damage in the structure. However, existing strain energy methods require the first few modes to be measured to provide meaningful damage detection. Use of individual modes with existing strain energy methods may indicate false alarms or may not detect the damage at or near the nodal points. This paper proposes a new modal strain energy based damage index which can detect and localize the damage using any one of the modes measured and illustrates its application for beam structures. It becomes evident that the proposed strain energy based damage index also has potential for damage quantification.
Resumo:
BACKGROUND: The presence of insects in stored grains is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspections of bulk grain commodities is essential to detect pests and therefore to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grains, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper we demonstrate a sampling methodology that accounts for the heterogeneous distribution of insects in bulk grains. RESULTS: We show that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling program to detect insects in bulk grains. Our results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. We also demonstrate that the probability of detecting pests in bulk grains increases as the number of sub-samples increases, even when the total volume or mass of grain sampled remains constant. CONCLUSION: This study demonstrates the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models.
Resumo:
The potential to sequester atmospheric carbon in agricultural and forest soils to offset greenhouse gas emissions has generated interest in measuring changes in soil carbon resulting from changes in land management. However, inherent spatial variability of soil carbon limits the precision of measurement of changes in soil carbon and hence, the ability to detect changes. We analyzed variability of soil carbon by intensively sampling sites under different land management as a step toward developing efficient soil sampling designs. Sites were tilled crop-land and a mixed deciduous forest in Tennessee, and old-growth and second-growth coniferous forest in western Washington, USA. Six soil cores within each of three microplots were taken as an initial sample and an additional six cores were taken to simulate resampling. Soil C variability was greater in Washington than in Tennessee, and greater in less disturbed than in more disturbed sites. Using this protocol, our data suggest that differences on the order of 2.0 Mg C ha(-1) could be detected by collection and analysis of cores from at least five (tilled) or two (forest) microplots in Tennessee. More spatial variability in the forested sites in Washington increased the minimum detectable difference, but these systems, consisting of low C content sandy soil with irregularly distributed pockets of organic C in buried logs, are likely to rank among the most spatially heterogeneous of systems. Our results clearly indicate that consistent intramicroplot differences at all sites will enable detection of much more modest changes if the same microplots are resampled.
Resumo:
The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy speech sequences designed to enable a thorough evaluation of voice activity detection (VAD) algorithms across a wide variety of common background noise scenarios. In order to construct the final mixed-speech database, a collection of over 10 hours of background noise was conducted across 10 unique locations covering 5 common noise scenarios, to create the QUT-NOISE corpus. This background noise corpus was then mixed with speech events chosen from the TIMIT clean speech corpus over a wide variety of noise lengths, signal-to-noise ratios (SNRs) and active speech proportions to form the mixed-speech QUT-NOISE-TIMIT corpus. The evaluation of five baseline VAD systems on the QUT-NOISE-TIMIT corpus is conducted to validate the data and show that the variety of noise available will allow for better evaluation of VAD systems than existing approaches in the literature.
Resumo:
Background/aims: To investigate the influence of a period of sustained near work upon axial length in groups of emmetropes and myopes. Methods: Forty young adult subjects (20 myopes and 20 emmetropes) were recruited for the study. Myopes were further classified as either early onset (EOM), late onset (LOM), stable (SM) or progressing (PM) subgroups. Axial length was measured with the IOLMaster instrument before, immediately after and then again 10 minutes after a continuous 30 minute near task of 5 D accommodation demand. Measures of distance objective refraction were also collected. Results: Significant changes in axial length were observed immediately following the near task. EOM axial length elongated on average by 0.027 ± 0.021 mm, LOM by 0.014 ± 0.020 mm, EMM by 0.010 ± 0.015 mm, PM by 0.031 ± 0.022 mm, and SM by 0.014 ± 0.018 mm. At the conclusion of the 10 minute regression period, axial length measures were not significantly different from baseline values. Conclusion: Axial elongation was observed following a prolonged near task. Both EOM and PM groups showed increases in axial length that were significantly greater than emmetropes
Resumo:
Robustness of the track allocation problem is rarely addressed in literatures and the obtained track allocation schemes (TAS) embody some bottlenecks. Therefore, an approach to detect bottlenecks is needed to support local optimization. First a TAS is transformed to an executable model by Petri nets. Then disturbances analysis is performed using the model and the indicators of the total trains' departure delays are collected to detect bottlenecks when each train suffers a disturbance. Finally, the results of the tests based on a rail hub linking six lines and a TAS about thirty minutes show that the minimum buffer time is 21 seconds and there are two bottlenecks where the buffer times are 57 and 44 seconds respectively, and it indicates that the bottlenecks do not certainly locate at the area where there is minimum buffer time. The proposed approach can further support selection of multi schemes and robustness optimization.
Resumo:
Fibre Bragg Grating (FBG) sensors have been installed along an existing line for the purposes of train detection and weight measurement. The results show fair accuracy and high resolution on the vertical force acted on track when the train wheels are rolling upon. While the sensors are already in place and data is available, further applications beyond train detection are explored. This study presents the analysis on the unique signatures from the data collected to characterise wheel-rail interaction for rail defect detection. Focus of this first stage of work is placed on the repeatability of signals from the same wheel-rail interactions while the rail is in healthy state. Discussions on the preliminary results and hence the feasibility of this condition monitoring application, as well as technical issues to be addressed in practice, are given.
Resumo:
Purpose. To investigate the effect of various presbyopic vision corrections on nighttime driving performance on a closed-road driving circuit. Methods. Participants were 11 presbyopes (mean age, 57.3 ± 5.8 years), with a mean best sphere distance refractive error of R+0.23±1.53 DS and L+0.20±1.50 DS, whose only experience of wearing presbyopic vision correction was reading spectacles. The study involved a repeated-measures design by which a participant's nighttime driving performance was assessed on a closed-road circuit while wearing each of four power-matched vision corrections. These included single-vision distance lenses (SV), progressive-addition spectacle lenses (PAL), monovision contact lenses (MV), and multifocal contact lenses (MTF CL) worn in a randomized order. Measures included low-contrast road hazard detection and avoidance, road sign and near target recognition, lane-keeping, driving time, and legibility distance for street signs. Eye movement data (fixation duration and number of fixations) were also recorded. Results. Street sign legibility distances were shorter when wearing MV and MTF CL than SV and PAL (P < 0.001), and participants drove more slowly with MTF CL than with PALs (P = 0.048). Wearing SV resulted in more errors (P < 0.001) and in more (P = 0.002) and longer (P < 0.001) fixations when responding to near targets. Fixation duration was also longer when viewing distant signs with MTF CL than with PAL (P = 0.031). Conclusions. Presbyopic vision corrections worn by naive, unadapted wearers affected nighttime driving. Overall, spectacle corrections (PAL and SV) performed well for distance driving tasks, but SV negatively affected viewing near dashboard targets. MTF CL resulted in the shortest legibility distance for street signs and longer fixation times.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
We describe research into the identification of anomalous events and event patterns as manifested in computer system logs. Prototype software has been developed with a capability that identifies anomalous events based on usage patterns or user profiles, and alerts administrators when such events are identified. To reduce the number of false positive alerts we have investigated the use of different user profile training techniques and introduce the use of abstractions to group together applications which are related. Our results suggest that the number of false alerts that are generated is significantly reduced when a growing time window is used for user profile training and when abstraction into groups of applications is used.
Resumo:
For the first time in human history, large volumes of spoken audio are being broadcast, made available on the internet, archived, and monitored for surveillance every day. New technologies are urgently required to unlock these vast and powerful stores of information. Spoken Term Detection (STD) systems provide access to speech collections by detecting individual occurrences of specified search terms. The aim of this work is to develop improved STD solutions based on phonetic indexing. In particular, this work aims to develop phonetic STD systems for applications that require open-vocabulary search, fast indexing and search speeds, and accurate term detection. Within this scope, novel contributions are made within two research themes, that is, accommodating phone recognition errors and, secondly, modelling uncertainty with probabilistic scores. A state-of-the-art Dynamic Match Lattice Spotting (DMLS) system is used to address the problem of accommodating phone recognition errors with approximate phone sequence matching. Extensive experimentation on the use of DMLS is carried out and a number of novel enhancements are developed that provide for faster indexing, faster search, and improved accuracy. Firstly, a novel comparison of methods for deriving a phone error cost model is presented to improve STD accuracy, resulting in up to a 33% improvement in the Figure of Merit. A method is also presented for drastically increasing the speed of DMLS search by at least an order of magnitude with no loss in search accuracy. An investigation is then presented of the effects of increasing indexing speed for DMLS, by using simpler modelling during phone decoding, with results highlighting the trade-off between indexing speed, search speed and search accuracy. The Figure of Merit is further improved by up to 25% using a novel proposal to utilise word-level language modelling during DMLS indexing. Analysis shows that this use of language modelling can, however, be unhelpful or even disadvantageous for terms with a very low language model probability. The DMLS approach to STD involves generating an index of phone sequences using phone recognition. An alternative approach to phonetic STD is also investigated that instead indexes probabilistic acoustic scores in the form of a posterior-feature matrix. A state-of-the-art system is described and its use for STD is explored through several experiments on spontaneous conversational telephone speech. A novel technique and framework is proposed for discriminatively training such a system to directly maximise the Figure of Merit. This results in a 13% improvement in the Figure of Merit on held-out data. The framework is also found to be particularly useful for index compression in conjunction with the proposed optimisation technique, providing for a substantial index compression factor in addition to an overall gain in the Figure of Merit. These contributions significantly advance the state-of-the-art in phonetic STD, by improving the utility of such systems in a wide range of applications.
Resumo:
The concept of non-destructive testing (NDT) of materials and structures is of immense importance in engineering and medicine. Several NDT methods including electromagnetic (EM)-based e.g. X-ray and Infrared; ultrasound; and S-waves have been proposed for medical applications. This paper evaluates the viability of near infrared (NIR) spectroscopy, an EM method for rapid non-destructive evaluation of articular cartilage. Specifically, we tested the hypothesis that there is a correlation between the NIR spectrum and the physical and mechanical characteristics of articular cartilage such as thickness, stress and stiffness. Intact, visually normal cartilage-on-bone plugs from 2-3yr old bovine patellae were exposed to NIR light from a diffuse reflectance fibre-optic probe and tested mechanically to obtain their thickness, stress, and stiffness. Multivariate statistical analysis-based predictive models relating articular cartilage NIR spectra to these characterising parameters were developed. Our results show that there is a varying degree of correlation between the different parameters and the NIR spectra of the samples with R2 varying between 65 and 93%. We therefore conclude that NIR can be used to determine, nondestructively, the physical and functional characteristics of articular cartilage.
Resumo:
ABSTR.4CT Senitivity of dot-immunobindinding ELf SA on nitrocellulose membrane (DotELISA)was compared with double-antibody sandwich ELISA (DAS-ELlSA) on polystyrene plates for the detection of bean yellow mosaic virus (BYMV), broad bean stain virus (WMV-2). Dot-ELISA was 2 and 1O times more sensitive than DAS-ELISA for the detection of BBSV and WMV-2, respectively, whereas DAS-ELISA was more sensitive than Dot-ELiSA for {he detection of BYMV. Both techniques were equally sensitive for the detection of BYDV. Using one day instead uf the two-day procedure, the four viruses were still detectable and the ralative sensitivity of both techniques remained the same.
Resumo:
Double-stranded RNA species ranging in molecular weight from 0.95 to 6.3 × 106 were detected in grapevines in New York. We recently showed that two of the species (Mr = 5.3 and 4.4 × 106) are associated with rupestris stem pitting disease. In this report, we show that the other eight detectable dsRNA species are associated with the powdery mildew fungus, Uncinula necator. These dsRNAs associated with the powdery mildew fungus were previously detected in leaves and epidermal stem tissue of grapevines infected with powdery mildew. The same dsRNA species were also detected from extracts of isolated cleistothecia and conidia of U. necator devoid of plant tissue. Isometric and rigid rodlike particles were observed in single cleistothecia preparations when examined under transmission electron microscopy.