140 resultados para yard drying
Resumo:
- Description of the work Harvest: A biotextile future consists of four bags constructed from kombucha, each utilizing a different approach to this material. The kombucha material is a byproduct of the fermented green tea, kombucha, and is comprised of a symbiotic culture of bacteria and yeast (SCOBY) that forms a fast growing curd or pellicle on the surface of the tea. This pellicle is harvested, washed, and dried to make a material with characteristics that can range between leather and paper in handle. The pellicle is one hundred per cent cellulose, with the individual fibres growing together to produce a durable and strong non-woven textile. Techniques explored with the dry kombucha material include folding, stitching, and laser etching. The final bags were designed with reference to classic tropes of fashion accessories: the briefcase, the clutch, the valise and the handbag. The valise included three jars in which the kombucha was displayed as ‘growing’ within the bag. - Research Background This work sits within an emerging field of practice in which fashion design intersects with biotechnology. Designers such as Suzanne Lee have explored constructing garments from bacteria byproducts, and bio-artists Oron Catts and Ionat Zurr have created ‘victimless leather’ grown from cultured cells. Although still speculative, these collaborations between science and design point to new material applications for fashion. Our work contributes to this area through testing both the growing of the textile and its application to construct durable fashion artefacts. - Research Contribution Harvest: A biotextile future makes two contributions to new knowledge in the area of design for sustainability within fashion. The first contribution lies in extending the technical experimentation required to grow and manipulate the textile. For the briefcase, the pattern shape was ‘grown’ into the required shape, using a shaped container. Other techniques used in the bags included weaving, folding and laser etching the material to extend its functional and decorative properties. Experimentation with the growing and drying of the material led to the production of a wide range of physical properties, in which the material was more brittle or flexible as required. The second research contribution lies in the proposal of this material for use in durable fashion accessories. The material is still speculative and small-scale in production, however the four bags illustrate the potential for kombucha as a biodegradable alternative to leather or synthetic materials. - Research Significance This interplay of science and design research opens up an exploration for a speculative future of sustainable, biodegradable textiles using live bacteria to enable ‘homegrown’ vegan apparel. The collaborators on this project include scientist Peter Musk and fashion designers Alice Payne and Dean Brough. Harvest: A biotextile future was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design.
Resumo:
Ti3Si(Al)C2 films were electrophoretically deposited at 3 V on indium-tin-oxide (ITO) conductive glass from Ti3Si(Al) C2 aqueous suspension with 1 vol% solid loading at pH 9 in the absence of any dispersant. The surface morphology, cross section microstructure, and preferred orientation of the films were investigated by scanning electron microscopy and X-ray diffraction. The as-deposited Ti3Si(Al)C 2 films exhibited (00l) preferred orientation and the thickness can be controlled by the deposition-drying-deposition method. These results demonstrate that electrophoretic deposition is a simple and feasible method to prepare MAX-phases green films at room temperature.
Resumo:
An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.
Resumo:
An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.