416 resultados para membrane separation factor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Hreceptor (VEGFR) and FGF receptor (FGFR) signaling pathways. EXPERIMENTAL DESIGN: Six different s.c. patient-derived HCC xenografts were implanted into mice. Tumor growth was evaluated in mice treated with brivanib compared with control. The effects of brivanib on apoptosis and cell proliferation were evaluated by immunohistochemistry. The SK-HEP1 and HepG2 cells were used to investigate the effects of brivanib on the VEGFR-2 and FGFR-1 signaling pathways in vitro. Western blotting was used to determine changes in proteins in these xenografts and cell lines. RESULTS: Brivanib significantly suppressed tumor growth in five of six xenograft lines. Furthermore, brivanib-induced growth inhibition was associated with a decrease in phosphorylated VEGFR-2 at Tyr(1054/1059), increased apoptosis, reduced microvessel density, inhibition of cell proliferation, and down-regulation of cell cycle regulators. The levels of FGFR-1 and FGFR-2 expression in these xenograft lines were positively correlated with its sensitivity to brivanib-induced growth inhibition. In VEGF-stimulated and basic FGF stimulated SK-HEP1 cells, brivanib significantly inhibited VEGFR-2, FGFR-1, extracellular signal-regulated kinase 1/2, and Akt phosphorylation. CONCLUSION: This study provides a strong rationale for clinical investigation of brivanib in patients with HCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Once melanoma metastasizes, no effective treatment modalities prolong survival in most patients. This notorious refractoriness to therapy challenges investigators to identify agents that overcome melanoma resistance to apoptosis. Whereas many survival pathways contribute to the death-defying phenotype in melanoma, a defect in apoptotic machinery previously highlighted inactivation of Apaf-1, an apoptosome component engaged after mitochondrial damage. During studies involving Notch signaling in melanoma, we observed a gamma-secretase tripeptide inhibitor (GSI; z-Leu-Leu-Nle-CHO), selected from a group of compounds originally used in Alzheimer's disease, induced apoptosis in nine of nine melanoma lines. GSI only induced G2-M growth arrest (but not killing) in five of five normal melanocyte cultures tested. Effective killing of melanoma cells by GSI involved new protein synthesis and a mitochondrial-based pathway mediated by up-regulation of BH3-only members (Bim and NOXA). p53 activation was not necessary for up-regulation of NOXA in melanoma cells. Blocking GSI-induced NOXA using an antisense (but not control) oligonucleotide significantly reduced the apoptotic response. GSI also killed melanoma cell lines with low Apaf-1 levels. We conclude that GSI is highly effective in killing melanoma cells while sparing normal melanocytes. Direct enhancement of BH3-only proteins executes an apoptotic program overcoming resistance of this lethal tumor. Identification of a p53-independent apoptotic pathway in melanoma cells, including cells with low Apaf-1, bypasses an impediment to current cytotoxic therapy and provides new targets for future therapeutic trials involving chemoresistant tumors.