156 resultados para direct recombination (DR)
Resumo:
Objective. To analyze the effect of HLA-DR genes on susceptibility to and severity of ankylosing spondylitis (AS). Methods. Three hundred sixty- three white British AS patients were studied; 149 were carefully assessed for a range of clinical manifestations, and disease severity was assessed using a structured questionnaire. Limited HLA class I typing and complete HLA-DR typing were performed using DNA-based methods. HLA data from 13,634 healthy white British bone marrow donors were used for comparison. Results. A significant association between DR1 and AS was found, independent of HLA-B27 (overall odds ratio [OR] 1.4, 95% confidence interval [95% CI] 1.1-1.8, P = 0.02; relative risk [RR] 2.7, 95% CI 1.5-4.8, P = 6 x 10-4 among homozygotes; RR 2.1, 95% CI 1.5-2.8, P = 5 x 10-6 among heterozygotes). A large but weakly significant association between DR8 and AS was noted, particularly among DR8 homozygotes (RR 6.8, 95% CI 1.6-29.2, P = 0.01 among homozygotes; RR 1.6, 95% CI 1.0-2.7, P = 0.07 among heterozygotes). A negative association with DR12 (OR 0.22, 95% CI 0.09-0.5, P = 0.001) was noted. HLA-DR7 was associated with younger age at onset of disease (mean age at onset 18 years for DR7-positive patients and 23 years for DR7-negative patients; Z score 3.21, P = 0.001). No other HLA class I or class H associations with disease severity or with different clinical manifestations of AS were found. Conclusion. The results of this study suggest that HLA-DR genes may have a weak effect on susceptibility to AS independent of HLA-B27, but do not support suggestions that they affect disease severity or different clinical manifestations.
Resumo:
Objective. HLA-DRB1, a major genetic determinant of susceptibility to rheumatoid arthritis (RA), is located within 1,000 kb of the gene encoding tumor necrosis factor (TNF). Because certain HLA-DRB1*04 subtypes increase susceptibility to RA, investigation of the role of the TNF gene is complicated by linkage disequilibrium (LD) between TNF and DRB1 alleles. By adequately controlling for this LD, we aimed to investigate the presence of additional major histocompatibility complex (MHC) susceptibility genes. Methods. We identified 274 HLA-DRB1*04-positive cases of RA and 271 HLA-DRB1*04-positive population controls. Each subject was typed for 6 single-nucleotide polymorphisms within a 4.5-kb region encompassing TNF and lymphotoxin a (LTA). LTA-TNF haplotypes in these unrelated individuals were determined using a combination of family data and the PHASE software program. Results. Significant differences in LTA-TNF haplotype frequencies were observed between different subtypes of HLA-DRB1*04. The LTA-TNF haplotypes observed were very restricted, with only 4 haplotypes constituting 81% of all haplotypes present. Among individuals carrying DRB1*0401, the LTA-TNF 2 haplotype was significantly underrepresented in cases compared with controls (odds ratio 0.5 [95% confidence interval 0.3-0.8], P = 0.007), while in those with DRB1*0404, the opposite effect was observed (P = 0.007). Conclusion. These findings suggest that the MHC contains genetic elements outside the LTA-TNF region that modify the effect of HLA-DRB1 on susceptibility to RA.
Resumo:
Objective. We have previously identified a single-nucleotide polymorphism (SNP) haplotype involving the lymphotoxin α (LTA) and tumor necrosis factor (TNF) loci (termed haplotype LTA-TNF2) on chromosome 6 that shows differential association with rheumatoid arthritis (RA) on HLA-DRB1*0404 and *0401 haplotypes, suggesting the presence of additional non-HLA-DRB1 RA susceptibility genes on these haplotypes. To refine this association, we performed a case-control association study using both SNPs and microsatellite markers in haplotypes matched either for HLA-DRB1*0404 or for HLA-DRB1*0401. Methods. Fourteen SNPs lying between HLA-DRB1 and LTA were genotyped in 87 DRB1*04-positive families. High-density microsatellite typing was performed using 24 markers spanning 2,500 kb centered around the TNF gene in 305 DRB1*0401 or *0404 cases and 400 DRB1*0401 or *0404 controls. Single-marker, 2-marker, and 3-marker minihaplotypes were constructed and their frequencies compared between the DRB1*0401 and DRB1*0404 matched case and control haplotypes. Results. Marked preservation of major histocompatibility complex haplotypes was seen, with chromosomes carrying LTA-TNF2 and either DRB1*0401 or DRB1*0404 both carrying an identical SNP haplotype across the 1-Mb region between TNF and HLA-DRB1. Using microsatellite markers, we observed two 3-marker minihaplotypes that were significantly overrepresented in the DRB1*0404 case haplotypes (P = 0.00024 and P = 0.00097). Conclusion. The presence of a single extended SNP haplotype between LTA-TNF2 and both DRB1*0401 and DRB1*0404 is evidence against this region harboring the genetic effects in linkage disequillbrium with LTA-TNF2. Two RA-associated haplotypes on the background of DRB1*0404 were identified in a 126-kb region surrounding and centromeric to the TNF locus.
Resumo:
The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.
Resumo:
Melt electrospinning and its additive manufacturing analogue, melt electrospinning writing (MEW), are two processes which can produce porous materials for applications where solvent toxicity and accumulation in solution electrospinning are problematic. This study explores the melt electrospinning of poly(ε-caprolactone) (PCL) scaffolds, specifically for applications in tissue engineering. The research described here aims to inform researchers interested in melt electrospinning about technical aspects of the process. This includes rapid fiber characterization using glass microscope slides, allowing influential processing parameters on fiber morphology to be assessed, as well as observed fiber collection phenomena on different collector substrates. The distribution and alignment of melt electrospun PCL fibers can be controlled to a certain degree using patterned collectors to create large numbers of scaffolds with shaped macroporous architectures. However, the buildup of residual charge in the collected fibers limits the achievable thickness of the porous template through such scaffolds. One challenge identified for MEW is the ability to control charge buildup so that fibers can be placed accurately in close proximity, and in many centimeter heights. The scale and size of scaffolds produced using MEW, however, indicate that this emerging process will fill a technological niche in biofabrication.
Resumo:
Visible light can drive esteri fi cation from aldehydes and alcohols using supported gold nanoparticles (Au/Al 2 O 3 ) as photo- catalysts at ambient temperatures. The gold nanoparticles (AuNPs) absorb visible light due to the localized surface plasmon resonance (LSPR) e ff ect, and the conduction electrons of the AuNPs gain the energy of the incident light. The energetic electrons, which concentrate at the NP surface, facilitate the activation of a range of aldehyde and alcohol substrates. The photocatalytic e ffi ciencies strongly depend on the Au loading, particle sizes of the AuNPs, irradiance, and wavelength of the light irradiation. Finally, a plausible reaction mechanism was proposed, and the Au/Al 2 O 3 catalysts can be reused several times without signi fi cantly losing activity. The knowledge acquired in this study may inspire further studies in new e ffi cient recyclable photocatalysts and a wide range of organic synthesis driven by sunlight.
Resumo:
Recent advances in direct-use plasmonic-metal nanoparticles (NPs) as photocatalysts to drive organic synthesis reactions under visible-light irradiation have attracted great interest. Plasmonic-metal NPs are characterized by their strong interaction with visible light through excitation of the localized surface plasmon resonance (LSPR). Herein, we review recent developments in direct photocatalysis using plasmonic-metal NPs and their applications. We focus on the role played by the LSPR of the metal NPs in catalyzing organic transformations and, more broadly, the role that light irradiation plays in catalyzing the reactions. Through this, the reaction mechanisms that these light-excited energetic electrons promote will be highlighted. This review will be of particular interest to researchers who are designing and fabricating new plasmonic-metal NP photocatalysts by identifying important reaction mechanisms that occur through light irradiation.
Resumo:
The production mechanism of OH radicals in a pulsed DC plasma jet is studied by a two-dimensional (2-D) plasma jet model and a one-dimensional (1-D) discharge model. For the plasma jet in the open air, electron-impact dissociation of H2O, electron neutralization of H2O+, as well as dissociation of H2O by O(1D) are found to be the main reactions to generate the OH species. The contribution of the dissociation of H2O by electron is more than the others. The additions of N2, O2, air, and H2O into the working gas increase the OH density outside the tube slightly, which is attributed to more electrons produced by Penning ionization. On the other hand, the additions of O2 and H2O into the working gas increase the OH density inside the tube substantially, which is attributed to the increased O (1D) and H2O concentration, respectively. The gas flow will transport high density OH out of the tube during pulse off period. It is also shown that the plasma chemistry and reactivity can be effectively controlled by the pulse numbers. These results are supported by the laser induced fluorescence measurements and are relevant to several applications of atmospheric-pressure plasmas in health care, medicine, and materials processing.
Resumo:
Greenhouse gas emissions and associated global climate change are a significant and growing concern for the world community. In order to improve building energy efficiency, the use of evaporative cooling systems is attracting growing attention. Using a climate assessment tool, the potential use of direct evaporative coolers over different Australian climates is evaluated. It is found that overall, the potential use of direct evaporative cooling is very significant in Australian climates. Among all the eight capital cities across Australia, except for Darwin, the need of hybrid cooling for other cities is found to be insignificant,and is less than 5% if appropriate air circulation is provided on hot/warm days. It is also found that the potential use of evaporative cooling can be significantly influenced by a change in the applications or design parameters. In Brisbane, it is estimated that with an increase of sensible cooling load from 30 W/m2 to 40 W/m2 in the conditioned space, the requirement in hours of hybrid cooling can increase significantly, from 4.06% to 14.89%.
Resumo:
The rights of individuals to self-determination and participation in social, political and economic life are recognised and supported by Articles 1, 3 and 25 of the International Covenant on Civil and Political Rights 1966.4 Article 1 of the United Nations’ Human Rights Council’s Resolution on the Promotion and Protection of Human Rights on the Internet of July 2012 confirms individuals have the same rights online as offline. Access to the internet is essential and as such the UN: Calls upon all States to promote and facilitate access to the Internet and international cooperation aimed at the development of media and information and communications facilities in all countries (Article 3) Accordingly, access to the internet per se is a fundamental human right, which requires direct State recognition and support.5 The obligations of the State to ensure its citizens are able, and are enabled, to access the internet, are not matters that should be delegated to commercial parties. Quite simply – access to the internet, and high-speed broadband, by whatever means are “essential services” and therefore “should be treated as any other utility service”...
Resumo:
Objective. To elucidate the relative importance of the HLA-DR and HLA-DQ loci in conferring genetic predisposition to rheumatoid arthritis (RA). Methods. HLA-DRB1 and HLA-DQB1 alleles were typed in a set of 685 patients with RA using sequence-specific polymerase chain reaction. Allele and phenotype frequencies were compared with those in 2 large sets of historical, ethnically matched healthy controls, using the relative predispositional effect method. Results. Positive association was confirmed with the shared epitope positive HLA-DRB1 alleles associated with RA in Caucasians. A significant susceptibility effect was observed with HLA-DRB1*09, described in other ethnically diverse populations but not in Caucasians. A significant underrepresentation of the HLA-DRB1*0103 variant was noted among the RA cases, supporting the proposed protective role of the DERAA motif at residues 70-74 of the DRβ molecule. No HLA-DRB1 independent association of the HLA-DQB1 alleles, implicated in predisposing to RA, was evident. Conclusion. These data corroborate the shared epitope hypothesis of susceptibility to RA and provide strong evidence for the DRB1 locus as the primary RA susceptibility factor in the HLA region.
Resumo:
This thesis examines the significance of crowdfunding for Australian filmmakers and provides an empirical basis to current claims about the role of crowdfunding in the film production and policy sectors. It has found that crowdfunding is a small but growing source of supplementary finance which is opening up new possibilities for Australian independent screen content producers. This project also highlights the discussion within Australian film policy circles that is opening the way for crowdfunding to potentially become a larger and more formalised component of current and emerging policy initiatives.
Resumo:
A modified conventional direct shear device was used to measure unsaturated shear strength of two silty soils at low suction values (0 ~ 50 kPa) that were achieved by following drying and wetting paths of soil water characteristic curves (SWCCs). The results revealed that the internal friction angle of the soils was not significantly affected by either the suction or the drying wetting SWCCs. The apparent cohesion of soil increased with a decreasing rate as suction increased. Shear stress-shear displacement curves obtained from soil specimens subjected to the same net normal stress and different suction values showed a higher initial stiffness and a greater peak stress as suction increased. A soil in wetting exhibited slightly higher peak shear stress and more contractive volume change behavior than that of soil in drying at the same net normal stress and suction.
Resumo:
The oxides of cobalt have recently been shown to be highly effective electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. In general species such as Co3O4 and CoOOH have been investigated that often require an elevated temperature step during their synthesis to create crystalline materials. In this work we investigate the rapid and direct electrochemical formation of amorphous nanostructured Co(OH)2 on gold electrodes under room temperture conditions which is a highly active precursor for the OER. During the OER some conversion to crystalline Co3O4 occurs at the surface, but the bulk of the material remains amorphous. It is found that the underlying gold electrode is crucial to the materials enhanced performance and provides higher current density than can be achieved using carbon, palladium or copper support electrodes. This catalyst exhibits excellent activity with a current density of 10 mA cm-2 at an overpotential of 360 mV with a high turnover frequency of 2.1 s-1 in 1 M NaOH. A Tafel slope of 56 mV dec-1 at low overpotentials and a slope of 122 mV dec-1 at high overpotentials is consistent with the dual barrier model for the electrocatalytic evolution of oxygen. Significantly, the catalyst maintains excellent activity for up to 24 hr of continuous operation and this approach offers a facile way to create a highly effective and stable material.
Resumo:
To strive to improve the rehabilitation program of individuals with transfemoral amputation fitted with bone-anchored prosthesis based on data from direct measurements of the load applied on the residuum we first of all need to understand the load applied on the fixation. Therefore the load applied on the residuum was first directly measured during standardized activities of daily living such as straight line level walking, ascending and descending stairs and a ramp and walking around a circle. From measuring the load in standardized activities of daily living the load was also measured during different phases of the rehabilitation program such as during walking with walking aids and during load bearing exercises.[1-15] The rehabilitation program for individuals with a transfemoral amputation fitted with an OPRA implant relies on a combination of dynamic and static load bearing exercises.[16-20] This presentation will focus on the study of a set of experimental static load bearing exercises. [1] A group of eleven individuals with unilateral transfemoral amputation fitted with an OPRA implant participated in this study. The load on the implant during the static load bearing exercises was measured using a portable system including a commercial transducer embedded in a short pylon, a laptop and a customized software package. This apparatus was previously shown effective in a proof-of-concept study published by Prof. Frossard. [1-9] The analysis of the static load bearing exercises included an analysis of the reliability as well as the loading compliance. The analysis of the loading reliability showed a high reliability between the loading sessions indicating a correct repetition of the LBE by the participants. [1, 5] The analysis of the loading compliance showed a significant lack of axial compliance leading to a systematic underloading of the long axis of the implant during the proposed experimental static LBE.