481 resultados para cost prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim was to construct and advise on the use of a cost-per-wear model based on contact lens replacement frequency, to form an equitable basis for cost comparison. ---------- Methods: The annual cost of professional fees, contact lenses and solutions when wearing daily, two-weekly and monthly replacement contact lenses is determined in the context of the Australian market for spherical, toric and multifocal prescription types. This annual cost is divided by the number of times lenses are worn per year, resulting in a ‘cost-per-wear’. The model is presented graphically as the cost-per-wear versus the number of times lenses are worn each week for daily replacement and reusable (two-weekly and monthly replacement) lenses.---------- Results: The cost-per-wear for two-weekly and monthly replacement spherical lenses is almost identical but decreases with increasing frequency of wear. The cost-per-wear of daily replacement spherical lenses is lower than for reusable spherical lenses, when worn from one to four days per week but higher when worn six or seven days per week. The point at which the cost-per-wear is virtually the same for all three spherical lens replacement frequencies (approximately AUD$3.00) is five days of lens wear per week. A similar but upwardly displaced (higher cost) pattern is observed for toric lenses, with the cross-over point occurring between three and four days of wear per week (AUD$4.80). Multifocal lenses have the highest price, with cross-over points for daily versus two-weekly replacement lenses at between four and five days of wear per week (AUD$5.00) and for daily versus monthly replacement lenses at three days per week (AUD$5.50).---------- Conclusions: This cost-per-wear model can be used to assist practitioners and patients in making an informed decision in relation to the cost of contact lens wear as one of many considerations that must be taken into account when deciding on the most suitable lens replacement modality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Value Management (VM) has been proven to provide a structured framework, together with other supporting tools and techniques, that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. One of the major success factors of VM in achieving better project objectives for clients is through the provision of beneficial input by multi-disciplinary team members being involved in critical decision-making discussions during the early stage of construction projects. This paper describes a doctoral research proposal based on the application of VM in design and build construction projects, especially focusing on the design stage. The research aims to study the effects of implementing VM in design and build construction projects, in particular how well the methodology addresses issues related to cost overruns resulting from poor coordination and overlooking of critical constructability issues amongst team members in construction projects in Malaysia. It is proposed that through contractors’ early involvement during the design stage, combined with the use of the VM methodology, particularly as a decision-making tool, better optimization of construction cost can be achieved, thus promoting more efficient and effective constructability. The main methods used in this research involve a thorough literature study, semi-structured interviews, and a survey of major stakeholders, a detailed case study and a VM workshop and focus group discussions involving construction professionals in order to explore and possibly develop a framework and a specific methodology for the facilitating successful application of VM within design and build construction projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate owner budget estimates are critical to the initial decision-to-build process for highway construction projects. However, transportation projects have historically experienced significant construction cost overruns from the time the decision to build has been taken by the owner. This paper addresses the problem of why highway projects overrun their predicted costs. It identifies the owner risk variables that contribute to significant cost overrun and then uses factor analysis, expert elicitation, and the nominal group technique to establish groups of importance ranked owner risks. Stepwise multivariate regression analysis is also used to investigate any correlation of the percentage of cost overrun with risks, together with attributes such as highway project type, indexed cost, geographics location, and project delivery method. The research results indicate a correlation between the reciprocal of project budgets size and percentage cost overrun. This can be useful for owners in determining more realistic decision-to-build highway budget estimates by taking into account the economies of scale associated with larger projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions that result from scientific research hold great appeal for decision-makers who are grappling with complex and controversial environmental issues, by promising to enhance their ability to determine a need for and outcomes of alternative decisions. A problem exists in that decision-makers and scientists in the public and private sectors solicit, produce, and use such predictions with little understanding of their accuracy or utility, and often without systematic evaluation or mechanisms of accountability. In order to contribute to a more effective role for ecological science in support of decision-making, this paper discusses three ``best practices'' for quantitative ecosystem modeling and prediction gleaned from research on modeling, prediction, and decision-making in the atmospheric and earth sciences. The lessons are distilled from a series of case studies and placed into the specific context of examples from ecological science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes. Considerable past research has explored relationships between vehicle accidents and geometric design and operation of road sections, but relatively little research has examined factors that contribute to accidents at railway-highway crossings. Between 1998 and 2002 in Korea, about 95% of railway accidents occurred at highway-rail grade crossings, resulting in 402 accidents, of which about 20% resulted in fatalities. These statistics suggest that efforts to reduce crashes at these locations may significantly reduce crash costs. The objective of this paper is to examine factors associated with railroad crossing crashes. Various statistical models are used to examine the relationships between crossing accidents and features of crossings. The paper also compares accident models developed in the United States and the safety effects of crossing elements obtained using Korea data. Crashes were observed to increase with total traffic volume and average daily train volumes. The proximity of crossings to commercial areas and the distance of the train detector from crossings are associated with larger numbers of accidents, as is the time duration between the activation of warning signals and gates. The unique contributions of the paper are the application of the gamma probability model to deal with underdispersion and the insights obtained regarding railroad crossing related vehicle crashes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival probability prediction using covariate-based hazard approach is a known statistical methodology in engineering asset health management. We have previously reported the semi-parametric Explicit Hazard Model (EHM) which incorporates three types of information: population characteristics; condition indicators; and operating environment indicators for hazard prediction. This model assumes the baseline hazard has the form of the Weibull distribution. To avoid this assumption, this paper presents the non-parametric EHM which is a distribution-free covariate-based hazard model. In this paper, an application of the non-parametric EHM is demonstrated via a case study. In this case study, survival probabilities of a set of resistance elements using the non-parametric EHM are compared with the Weibull proportional hazard model and traditional Weibull model. The results show that the non-parametric EHM can effectively predict asset life using the condition indicator, operating environment indicator, and failure history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voice recognition is one of the key enablers to reduce driver distraction as in-vehicle systems become more and more complex. With the integration of voice recognition in vehicles, safety and usability are improved as the driver’s eyes and hands are not required to operate system controls. Whilst speaker independent voice recognition is well developed, performance in high noise environments (e.g. vehicles) is still limited. La Trobe University and Queensland University of Technology have developed a low-cost hardware-based speech enhancement system for automotive environments based on spectral subtraction and delay–sum beamforming techniques. The enhancement algorithms have been optimised using authentic Australian English collected under typical driving conditions. Performance tests conducted using speech data collected under variety of vehicle noise conditions demonstrate a word recognition rate improvement in the order of 10% or more under the noisiest conditions. Currently developed to a proof of concept stage there is potential for even greater performance improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. ---------- Methods and Findings: A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds.---------- Conclusions: A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements.