384 resultados para based on (NM2) – (SOR2NM2)
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Hence, there is an urgent need to monitor our infrastructures to prolong their life span, at the same time catering for heavier and faster moving traffics. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for structural health monitoring. The CNTs, a key material in nanotechnology has aroused great interest in the research community due to their remarkable mechanical, electrochemical, piezoresistive and other physical properties. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties when subjected to chemical solutions, to simulate a chemical reaction due to corrosion and real life corrosion experimental tests. The electrical resistance of the sensor electrode was dramatically changed due to corrosion. The novel sensor is expected to effectively detect corrosion in structures based on the measurement of electrical impedances of the CNT composite.
Resumo:
In many applications, e.g., bioinformatics, web access traces, system utilisation logs, etc., the data is naturally in the form of sequences. People have taken great interest in analysing the sequential data and finding the inherent characteristics or relationships within the data. Sequential association rule mining is one of the possible methods used to analyse this data. As conventional sequential association rule mining very often generates a huge number of association rules, of which many are redundant, it is desirable to find a solution to get rid of those unnecessary association rules. Because of the complexity and temporal ordered characteristics of sequential data, current research on sequential association rule mining is limited. Although several sequential association rule prediction models using either sequence constraints or temporal constraints have been proposed, none of them considered the redundancy problem in rule mining. The main contribution of this research is to propose a non-redundant association rule mining method based on closed frequent sequences and minimal sequential generators. We also give a definition for the non-redundant sequential rules, which are sequential rules with minimal antecedents but maximal consequents. A new algorithm called CSGM (closed sequential and generator mining) for generating closed sequences and minimal sequential generators is also introduced. A further experiment has been done to compare the performance of generating non-redundant sequential rules and full sequential rules, meanwhile, performance evaluation of our CSGM and other closed sequential pattern mining or generator mining algorithms has also been conducted. We also use generated non-redundant sequential rules for query expansion in order to improve recommendations for infrequently purchased products.
Resumo:
Pt/nanostructured WO3/SiC Schottky diodes were fabricated and applied for hydrogen gas sensing applications. The nanostructured WO3 films were synthesized from tungsten coated SiC substrates via an acid-etching method using a 1.5 M HNO3 solution for 1 hr, 2 hrs and 3 hrs duration. Scanning electron microscopy of the developed films revealed platelet crystals with thicknesses in the order of 20-60 nm and lengths between 100-700 nm. X-ray diffraction analysis revealed that the rate of oxidation of tungsten increases as the duration of acid-etching increases. The devices were tested towards hydrogen gas balanced in air at different temperatures from 25°C to 200°C. At 200°C, voltage shifts of 0.45 V, 0.93 V and 2.37 V were recorded for devices acid-etched for 1 hr, 2 hrs and 3 hrs duration, respectively upon exposure to 1% hydrogen, under a constant forward bias current of 500 µA.
Resumo:
Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
The performance and electron recombination kinetics of dye-sensitized solar cells based on TiO2 films consisting of one-dimensional nanorod arrays (NR-DSSCs) which are sensitized with dye N719, C218 and D205 respectively have been studied. It has been found that the best efficiency is obtained with the dye C218 based NR-DSSCs, benefiting from a 40% higher short-circuit photocurrent density. However, the open circuit photovoltage of the N719 based cell is 40 mV higher than that of the organic dye C218 and D205 based devices. Investigation of the electron recombination kinetics of the NR-DSSCs has revealed that the effective electron lifetime, τn, of the N719 based NR-DSSC is the lowest whereas the τn of the C218 based NR-DSSC is the highest among the three dyes. The higher Voc with the N719 based NR-DSSC is originated from the more negative energy level of the conduction band of the TiO2 film. In addition, in comparison to the DSSCs with conventional nanocrystalline particles based TiO2 films, the NR-DSSCs have shown over two orders of magnitude higher τn when employing N719 as the sensitizer. Nevertheless, the τn of the DSSCs with the C218 based nanorod arrays is only ten-fold higher than the that of the nanoparticles based devices. The remarkable characteristic of the dye C218 in suppressing the electron recombination of DSSCs is discussed.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.
Resumo:
With the emergence of Web 2.0, Web users can classify Web items of their interest by using tags. Tags reflect users’ understanding to the items collected in each tag. Exploring user tagging behavior provides a promising way to understand users’ information needs. However, free and relatively uncontrolled vocabulary has its drawback in terms of lack of standardization and semantic ambiguity. Moreover, the relationships among tags have not been explored even there exist rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach to construct tag ontology based on the widely used general ontology WordNet to capture the semantics and the structural relationships of tags. Ambiguity of tags is a challenging problem to deal with in order to construct high quality tag ontology. We propose strategies to find the semantic meanings of tags and a strategy to disambiguate the semantics of tags based on the opinion of WordNet lexicographers. In order to evaluate the usefulness of the constructed tag ontology, in this paper we apply the extracted tag ontology in a tag recommendation experiment. We believe this is the first application of tag ontology for recommendation making. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.
Resumo:
Whether the community is looking for “scapegoats” to blame, or seeking more radical and deeper causes, health care managers are in the firing line whenever there are woes in the health care sector. The public has a right to question whether ethics have much influence on the everyday decision making of health care managers. This thesis explores, through a series of published papers, the influence of ethics and other factors on the decision making of health care managers in Australia. Critical review of over 40 years of research on ethical decision making has revealed a large number of influencing factors, but there is a demonstrable lack of a multidimensional approach that measures the combined influences of these factors on managers. This thesis has developed an instrument, the Managerial Ethical Profile (MEP) scale, based on a multidimensional model combining a large number of influencing factors. The MEP scale measures the range of influences on individual managers, and describes the major tendencies by developing a number of empirical profiles derived from a hierarchical cluster analysis. The instrument was developed and refined through a process of pilot studies on academics and students (n=41) and small-business managers (n=41), and then was administered to the larger sample of health care managers (n=441). Results from this study indicate that Australian health care managers draw on a range of ethical frameworks in their everyday decision making, forming the basis of five MEPs (Knights, Guardian Angels, Duty Followers, Defenders, and Chameleons). Results from the study also indicate that the range of individual, organisational, and external factors that influence decision making can be grouped into three major clusters or functions. Cross referencing these functions and other demographic data to the MEPs provides analytical insight into the characteristics of the MEPs. These five profiles summarise existing strengths and weaknesses in managerial ethical decision making. Therefore identifying these profiles not only can contribute to increasing organisational knowledge and self-awareness, but also has clear implications for the design and implementation of ethics education and training in large scale organisations in the health care industry.
Resumo:
In this article, an enriched radial point interpolation method (e-RPIM) is developed for computational mechanics. The conventional radial basis function (RBF) interpolation is novelly augmented by the suitable basis functions to reflect the natural properties of deformation. The performance of the enriched meshless RBF shape functions is first investigated using the surface fitting. The surface fitting results have proven that, compared with the conventional RBF, the enriched RBF interpolation has a much better accuracy to fit a complex surface than the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF interpolation, but also can accurately reflect the deformation properties of problems. The system of equations for two-dimensional solids is then derived based on the enriched RBF shape function and both of the meshless strong-form and weak-form. A numerical example of a bar is presented to study the effectiveness and efficiency of e-RPIM. As an important application, the newly developed e-RPIM, which is augmented by selected trigonometric basis functions, is applied to crack problems. It has been demonstrated that the present e-RPIM is very accurate and stable for fracture mechanics problems.
Resumo:
New government service delivery models based on a “franchise” metaphor are being proposed recently to allow more citizen-centric service delivery by decoupling the government’s internal departmental structure from the way services are presented and delivered to citizens. In order to evaluate the approach from an online channel perspective, the Queensland Government commissioned a market research study to compare their websites with the online presences of the UK Government and the South Australian Government, who both have adopted the “franchise” approach. The study aimed to inform an understanding of citizens’ preferred model for interacting in the online channel and to identify the relative strengths and weaknesses of the existing websites. In this paper, we will a) report on the findings of this third party usability study and b) position the study, in the form of a critical reflection, against the background of a more comprehensive “Transformational Government” approach using a “franchise marketplace”. The critical reflection points towards limitations of the study with regard to this bigger picture and discusses the potential benefits of service bundling that remained unconsidered in the study.
Resumo:
In this paper, we fabricated Pt/tantalum oxide (Ta2O5) Schottky diodes for hydrogen sensing applications. Thin (4 nm) layer of Ta2O5 was deposited on silicon (Si) and silicon carbide (SiC) substrates by radio frequency (RF) sputtering technique. We compared the performance of these sensors at different elevated temperatures of 100 ∘C and 150 ∘C. At these temperatures, the sensor based on SiC exhibited a larger sensitivity while the sensor based on Si exhibited a faster response toward hydrogen gas. We discussed herein, the responses exhibited by the Pt/Ta2O5 based Schottky diodes demonstrated a promising potential for hydrogen sensing applications.