158 resultados para Targeting Chemotherapy
Resumo:
Glutamine is conditionally essential in cancer cells, being utilized as a carbon and nitrogen source for macromolecule production, as well as for anaplerotic reactions fuelling the tricarboxylic acid (TCA) cycle. In this study, we demonstrated that the glutamine transporter ASCT2 (SLC1A5) is highly expressed in prostate cancer patient samples. Using LNCaP and PC-3 prostate cancer cell lines, we showed that chemical or shRNA-mediated inhibition of ASCT2 function in vitro decreases glutamine uptake, cell cycle progression through E2F transcription factors, mTORC1 pathway activation and cell growth. Chemical inhibition also reduces basal oxygen consumption and fatty acid synthesis, showing that downstream metabolic function is reliant on ASCT2-mediated glutamine uptake. Furthermore, shRNA knockdown of ASCT2 in PC-3 cell xenografts significantly inhibits tumour growth and metastasis in vivo, associated with the down-regulation of E2F cell cycle pathway proteins. In conclusion, ASCT2-mediated glutamine uptake is essential for multiple pathways regulating the cell cycle and cell growth, and is therefore a putative therapeutic target in prostate cancer.
Resumo:
Objective High utilisation of emergency department (ED) among the elderly is of worldwide concern. This study aims to review the effectiveness of interventions targeting the elderly population in reducing ED utilisation. Methods Major biomedical databases were searched for relevant studies. Qualitative approach was applied to derive common themes in the myriad interventions and to critically assess the variations influencing interventions’ effectiveness. Quality of studies was appraised using the Effective Public Health Practice Project (EPPHP) tool. Results 36 studies were included. Nine of 16 community-based interventions reported significant reductions in ED utilisation. Five of 20 hospital-based interventions proved effective while another four demonstrated failure. Seven key elements were identified. Ten of 14 interventions associated with significant reduction on ED use integrated at least three of the seven elements. All four interventions with significant negative results lacked five or more of the seven elements. Some key elements including multidisciplinary team, integrated primary care and social care often existed in effective interventions, while were absent in all significantly ineffective ones. Conclusions The investigated interventions have mixed effectiveness. Our findings suggest the hospital-based interventions have relatively poorer effects, and should be better connected to the community-based strategies. Interventions seem to achieve the most success with integration of multi-layered elements, especially when incorporating key elements such as a nurse-led multidisciplinary team, integrated social care, and strong linkages to the longer-term primary and community care. Notwithstanding limitations in generalising the findings, this review builds on the growing body of evidence in this particular area.
Resumo:
The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR pathway is one of the most frequently activated signaling pathways in prostate cancer cells, and loss of the tumor suppressor PTEN and amplification of PIK3CA are the two most commonly detected mechanisms for the activation of these pathways. Aberrant activation of PI3K/Akt/mTOR has been implicated not only in the survival and metastasis of prostate cancer cells but also in the development of drug resistance. As such, selective inactivation of this pathway may provide opportunities to attack prostate cancer from all fronts. However, while preclinical studies examining specific inhibitors of PI3K or mTOR have yielded promising results, the evidence from clinical trials is less convincing. Emerging evidence from the analyses of some solid tumors suggests that a class of dual PI3K/mTOR inhibitors, which bind to and inactivate both PI3K and mTOR, may achieve better anti-cancer outcomes. In this review, we will summarize the mechanisms of action of these inhibitors, their effectiveness when used alone or in combination with other chemotherapeutic compounds, and their potential to serve as the next generation therapies for prostate cancer patients, particularly those who are resistant to the frontline chemotherapeutic drugs.
Resumo:
•EMT is important for embryonic development, wound healing, and placentation. •Some cancers appear to exploit this process for increased metastatic potential. •Therefore, this pathway is of great therapeutic interest in the treatment of cancer. The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial–mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach
Resumo:
Background Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy. Method We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (γ-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining γ-T3 and PSP in the treatment of prostate cancer. Result We showed that in the presence of PSP, γ-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward γ-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and γ-T3 treaments significantly reduced the growth of prostate tumor in vivo. Conclusion Our results indicate that PSP and γ-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.
Resumo:
There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.
Resumo:
Chemotherapy-induced nausea and vomiting (CINV) are common nutrition-impact symptoms experienced by cancer patients. They exert a detrimental effect on dietary intake, risk of malnutrition and quality of life. While CINV are primarily managed with medication, dietitians play an important role in the management of CINV-related complications such as reduced dietary intake. This review discusses the burden of nausea and vomiting which cancer patients can experience, including its effect on quality of life, nutrition status, and treatment outcomes. Implications for dietetic practice include the need to explore the nature of reported symptoms, identify predisposing risk factors, and to consider the use of a variety of interventions that are individualised to the patient’s symptoms. There are little clinical data regarding effective dietetic interventions for nausea and vomiting. In summary, this review discusses dietetic-related issues surrounding CINV including the pathophysiology, risk factors, prevalence, and both pharmacological and dietetic treatment options.
Resumo:
Background Risky single occasion drinking (RSOD; 4 or more drinks in <6 h) more than doubles the risk of injury in young people (15 - 25 years). The potential role of smartphone apps in reducing RSOD in young people is yet to be explored. Objective: To describe the initial prototype testing of ‘Ray's Night Out’, a new iPhone app targeting RSOD in young people. Method Quantitative and qualitative methods were used to evaluate the quality, perceived utility, and acceptability of the app among nine young people (19e23 years). Results Participants reported Ray's Night Out had good to excellent levels of functionality and visual appeal, acceptable to good levels of entertainment, interest and information, and acceptable levels of customization and interactivity. Young people thought the app had high levels of youth appeal, would prompt users to think about their alcohol use limits, but was unlikely to motivate a change in alcohol use in its current form. Qualitative data provided several suggestions for improving the app. Conclusion Following revision, Ray's Night Out could provide an effective intervention for RSOD in non help-seeking young people. A randomized controlled trial is currently underway to test the final prototype of the app.
Resumo:
- Introduction Research identifies truck drivers as being at high risk of chronic disease. For most truck drivers their workplace is their vehicle. Truck drivers’ health is impacted by the limitations of this unique working environment, including reduced opportunities for physical activity and the intake of healthy foods. Workplaces are widely recognised as effective platforms for health promotion. However, the effectiveness of traditional and contemporary health promotion interventions in truck drivers’ novel workplace is unknown. - Methods This project worked with six transport industry workplaces in Queensland, Australia over a two-year period. Researchers used Participatory Action Research (PAR) processes to engage truck drivers and workplace managers in the implementation and evaluation of six workplace health promotion interventions. These interventions were designed to support truck drivers to increase their physical activity and access to healthy foods at work. They included traditional health promotion interventions such as a free fruit initiative, a ten thousand steps challenge, personal health messages and workplace posters, and a contemporary social media intervention. Participants were engaged via focus groups, interviews and mixed-methods surveys. - Results The project achieved positive changes in truck drivers’ health knowledge and health behaviours, particularly related to nutrition. There were positive changes in truck drivers’ self-reported health rating, body mass index (BMI) and readiness to make health-related lifestyle changes. There were also positive changes in truck drivers reporting their workplace as a key source of health information. These changes were underpinned by a positive shift in the culture of participating workplaces. Truck drivers’ perceptions of their workplace valuing, encouraging, modelling and facilitating healthy nutrition and physical activity behaviours improved. PAR processes enabled researchers to develop relationships with workplace managers, contextualise interventions and deliver rigorous outcomes. Despite the novelty of truck drivers’ mobile workplace, traditional health promotion interventions were more effective than contemporary ones. - Conclusion In this workplace health promotion project targeting a ‘hard-to-reach’ group of truck drivers, a combination of well-designed traditional workplace interventions and the PAR process resulted in positive health outcomes.
Resumo:
Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases. Copyright © 2010 by The American Association of Immunologists, Inc.
Resumo:
There is an increasing awareness of the therapeutic potential for combining immune-based therapies with chemotherapy in the treatment of malignant diseases, but few published studies evaluate possible cytotoxic synergies between chemotherapy and cytotoxic immune cells. Human Vα24 +/Vβ11+ NKT cells are being evaluated for use in cell-based immunotherapy of malignancy because of their immune regulatory functions and potent cytotoxic potential. In this study, we evaluated the cytotoxicity of combinations of chemotherapy and NKT cells to determine whether there is a potential to combine these treatment modalities for human cancer therapy. The cytotoxicity of NKT cells was tested against solid-tumor derived cell lines NCI-H358, DLD-1, HT-29, DU-145, TSU-Pr1 and MDA-MB231, with or without prior treatment of these target cells, with a range of chemotherapy agents. Low concentrations of chemotherapeutic agents led to sensitization of cell lines to NKT-mediated cytotoxicity, with the greatest effect being observed for prostate cancer cells. Synergistic cytotoxicity occurred in an NKT cell in a dose-dependent manner. Chemotherapy agents induced upregulation of cell surface TRAIL-R2 (DR5) and Fas (CD95) expression, increasing the capacity for NKT cells to recognize and kill via TRAIL- and FasL-mediated pathways. We conclude that administration of cytotoxic immune cells after chemotherapy may increase antitumor activities in comparison with the use of either treatment alone.
Resumo:
Hematogenous metastases are rarely present at diagnosis of ovarian clear cell carcinoma (OCC). Instead dissemination of these tumors is characteristically via direct extension of the primary tumor into nearby organs and the spread of exfoliated tumor cells throughout the peritoneum, initially via the peritoneal fluid, and later via ascites that accumulates as a result of disruption of the lymphatic system. The molecular mechanisms orchestrating these processes are uncertain. In particular, the signaling pathways used by malignant cells to survive the stresses of anchorage-free growth in peritoneal fluid and ascites, and to colonize remote sites, are poorly defined. We demonstrate that the transmembrane glycoprotein CUB-domain-containing protein 1 (CDCP1) has important and inhibitable roles in these processes. In vitro assays indicate that CDCP1 mediates formation and survival of OCC spheroids, as well as cell migration and chemoresistance. Disruption of CDCP1 via silencing and antibody-mediated inhibition markedly reduce the ability of TOV21G OCC cells to form intraperitoneal tumors and induce accumulation of ascites in mice. Mechanistically our data suggest that CDCP1 effects are mediated via a novel mechanism of protein kinase B (Akt) activation. Immunohistochemical analysis also suggested that CDCP1 is functionally important in OCC, with its expression elevated in 90% of 198 OCC tumors and increased CDCP1 expression correlating with poor patient disease-free and overall survival. This analysis also showed that CDCP1 is largely restricted to the surface of malignant cells where it is accessible to therapeutic antibodies. Importantly, antibody-mediated blockade of CDCP1 in vivo significantly increased the anti-tumor efficacy of carboplatin, the chemotherapy most commonly used to treat OCC. In summary, our data indicate that CDCP1 is important in the progression of OCC and that targeting pathways mediated by this protein may be useful for the management of OCC, potentially in combination with chemotherapies and agents targeting the Akt pathway.
Resumo:
Recent reports provide evidence that the epithelial-to-mesenchymal transition (EMT) plays a key role in prostate cancer (PCa) metastasis and therapy resistance. We have recently identified the cell surface receptor, Neuropilin-1 (NRP1) to be increased during epithelial-mesenchymal transition (EMT) and this study aims to determine whether the inhibition of NRP1 will be a feasible therapeutic strategy for blocking PCa metastasis and therapy resistance.
Resumo:
Purpose of review: Cancer-related fatigue (CRF) is the most common psychosomatic distress experienced by cancer patients before, during and after chemotherapy. Its impact on functional status and Health Related Quality of Life is a great concern among patients, healthcare professionals and researchers. The primary objective of this systematic review is to determine whether the different chemotherapies affect the association of CRF with individual pro- and anti-inflammatory cytokines. The PRISMA statement guideline has been followed to systematically search and screen article from PubMed and Embase. Recent findings: This review has examined 14 studies which included a total of 1312 patients. These studies assayed 20 different kinds of cytokines. The cytokines interleukin-6, interleukin-1RA, TGF-[beta] and sTNF-R2 were associated with CRF in patients receiving anthracycline-based chemotherapy. However, only interleukin-13 was identified in the taxane-based chemotherapy. Similarly, different sets of cytokines were linked with CRF in patients with chemotherapy regimens containing platinum, cyclophosphamides, topotecan or bleomycin. Summary: This review has identified that cytokines are differentially linked with CRF according to the various types of chemotherapy regimens.