193 resultados para Smoothed Particle Hydrodynamics
Resumo:
In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm-3, 15 µg m-3, 804 cfu m-3 and 177 cfu m-3 for flood-affected houses (AFH), and 2.74 p cm-3, 15 µg m-3, 547 cfu m-3 and 167 cfu m-3 for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 µg m-2 for AFH and 1454 ± 678 µg m-2 for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants.
Resumo:
The aim of this work was to investigate changes in particle number concentration (PNC) within naturally ventilated primary school classrooms arising from local sources either within or adjacent to the classrooms. We quantify the rate at which ultrafine particles were emitted either from printing, grilling, heating or cleaning activities and the rate at which the particles were removed by both deposition and air exchange processes. At each of 25 schools in Brisbane, Australia, two weeks of measurements of PNC and CO2 were taken both outdoors and in the two classrooms. Bayesian regression modelling was employed in order to estimate the relevant rates and analyse the relationship between air exchange rate (AER), particle infiltration and the deposition rates of particle generated from indoor activities in the classrooms. During schooling hours, grilling events at the school tuckshop as well as heating and printing in the classrooms led to indoor PNCs being elevated by a factor of more than four, with emission rates of (2.51 ± 0.25) x 1011 p min-1, (8.99 ± 6.70) x 1011 p min-1 and (5.17 ± 2.00) x 1011 p min-1, respectively. During non-school hours, cleaning events elevated indoor PNC by a factor of above five, with an average emission rate of (2.09 ± 6.30) x 1011 p min-1. Particles were removed by both air exchange and deposition; chiefly by ventilation when AER > 0.7 h-1 and by deposition when AER < 0.7 h-1.
Resumo:
This study demonstrates a novel method for testing the hypothesis that variations in primary and secondary particle number concentration (PNC) in urban air are related to residual fuel oil combustion at a coastal port lying 30 km upwind, by examining the correlation between PNC and airborne particle composition signatures chosen for their sensitivity to the elemental contaminants present in residual fuel oil. Residual fuel oil combustion indicators were chosen by comparing the sensitivity of a range of concentration ratios to airborne emissions originating from the port. The most responsive were combinations of vanadium and sulfur concentration ([S], [V]) expressed as ratios with respect to black carbon concentration ([BC]). These correlated significantly with ship activity at the port and with the fraction of time during which the wind blew from the port. The average [V] when the wind was predominantly from the port was 0.52 ng.m-3 (87%) higher than the average for all wind directions and 0.83 ng.m-3 (280%) higher than that for the lowest vanadium yielding wind direction considered to approximate the natural background. Shipping was found to be the main source of V impacting urban air quality in Brisbane. However, contrary to the stated hypothesis, increases in PNC related measures did not correlate with ship emission indicators or ship traffic. Hence at this site ship emissions were not found to be a major contributor to PNC compared to other fossil fuel combustion sources such as road traffic, airport and refinery emissions.
Resumo:
In this study, an LPG fumigation system was fitted to a Euro III compression ignition (CI) engine to explore its impact on performance, and gaseous and particulate emissions. LPG was introduced to the intake air stream (as a secondary fuel) by using a low pressure fuel injector situated upstream of the turbocharger. LPG substitutions were test mode dependent, but varied in the range of 14-29% by energy. The engine was tested over a 5 point test cycle using ultra low sulphur diesel (ULSD), and a low and high LPG substitution at each test mode. The results show that LPG fumigation coerces the combustion into pre-mixed mode, as increases in the peak combustion pressure (and the rate of pressure rise) were observed in most tests. The emissions results show decreases in nitric oxide (NO) and particulate matter (PM2.5) emissions; however, very significant increases in carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. A more detailed investigation of the particulate emissions showed that the number of particles emitted was reduced with LPG fumigation at all test settings – apart from mode 6 of the ECE R49 test cycle. Furthermore, the particles emitted generally had a slightly larger median diameter with LPG fumigation, and had a smaller semi-volatile fraction relative to ULSD. Overall, the results show that with some modifications, LPG fumigation systems could be used to extend ULSD supplies without adversely impacting on engine performance and emissions.
Resumo:
Cluster ions and charged and neutral nanoparticle concentrations were monitored using a neutral cluster and air ion spectrometer (NAIS) over a period of one year in Brisbane, Australia. The study yielded 242 complete days of usable data, of which particle formation events were observed on 101 days. Small, intermediate and large ion concentrations were evaluated in real time. In the diurnal cycle, small ion concentration was highest during the second half of the night while large ion concentrations were a maximum during the day. The small ion concentration showed a decrease when the large ion concentration increased. Particle formation was generally followed by a peak in the intermediate ion concentration. The rate of increase of intermediate ions was used as the criteria for identifying particle formation events. Such events were followed by a period of growth to larger sizes and usually occurred between 8 am and 2 pm. Particle formation events were found to be related to the wind direction. The gaseous precursors for the production of secondary particles in the urban environment of Brisbane have been shown to be ammonia and sulfuric acid. During these events, the nanoparticle number concentrations in the size range 1.6 to 42 nm, which were normally lower than 1x104 cm-3, often exceeded 5x104 cm-3 with occasional values over 1x105 cm-3. Cluster ions generally occurred in number concentrations between 300 and 600 cm-3 but decreased significantly to about 200 cm-3 during particle formation events. This was accompanied by an increase in the large ion concentration. We calculated the fraction of nanoparticles that were charged and investigated the occurrence of possible overcharging during particle formation events. Overcharging is defined as the condition where the charged fraction of particles is higher than in charge equilibrium. This can occur when cluster ions attach to neutral particles in the atmosphere, giving rise to larger concentrations of charged particles in the short term. Ion-induced nucleation is one of the mechanisms of particle formation in the atmosphere, and overcharging has previously been considered as an indicator of this process. The possible role of ions in particle formation was investigated.
Resumo:
The emission of particles in the ultrafine range (<100 nm) from laser printers has not been reported until recently (Uhde et al., 2006; He et al., 2007; Morawska et al., 2009). The research reported to date has provided a body of information about printer emissions and shed light on particle formation mechanisms. However, until now, the effect of fuser roller temperature on particle emissions had not been comprehensively investigated...
Resumo:
Exhaust emissions were monitored in real-time at the kerb of a busy busway used by a mix of diesel and CNG-powered transport buses. Particle number concentration in the size range 3 nm to 3 µm was measured with a TSI condensation particle counter (CPC 3025). Particle mass (PM2.5) was measured with a TSI Dustrak 8520. The CO2 emissions were measured with a fast response CO2 analyser (Sable CA-10A). All emission concentrations were recorded in real time at 1 sec resolution, together with the precise passage times of buses. The instantaneous ratio of particle number (or mass) to CO2 concentration, denoted Z, was used as a measure of the particle number (or mass) emission factor of each passing bus.
Resumo:
The issue of using informative priors for estimation of mixtures at multiple time points is examined. Several different informative priors and an independent prior are compared using samples of actual and simulated aerosol particle size distribution (PSD) data. Measurements of aerosol PSDs refer to the concentration of aerosol particles in terms of their size, which is typically multimodal in nature and collected at frequent time intervals. The use of informative priors is found to better identify component parameters at each time point and more clearly establish patterns in the parameters over time. Some caveats to this finding are discussed.
Resumo:
Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. From these reports, the overall median number concentration for each of the eight site categories was calculated. The eight location categories may be classified into four distinct groups. The mean median particle number locations for these four types were found to be statistically different from each other. Rural and clean background sites had the lowest concentrations of about 3x103 cm-3. Urban and urban background sites showed concentrations that were three times higher (9x103 cm-3). The mean concentration for the street canyon, roadside and on-road measurement sites was 4.6x104 cm-3, while the highest concentrations were observed in the road tunnels (8.6x104 cm-3). This variation is important when assessing human exposure-response for which there is very little data available, making it difficult to develop health guidelines, a basis for national regulations. Our analyses shows that the current levels in environments affected by vehicle emissions are 3 to 28 times higher than in the natural environments. At present, there is no threshold level in response to exposure to ultrafine particles. Therefore, future control and management strategies should target a decrease of these particles in urban environments by more than one order of magnitude to bring them down to the natural background. At present there is a long way to go to achieve this.
Resumo:
Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. Median values were calculated for each category. This review was restricted to papers that presented concentrations numerically. The majority of the reports were based on either CPC or SMPS measurements, with a limited number of papers reporting results from both instruments at the same site. Hence there were several overlaps between the number of CPC and SMPS measuring sites. Most of the studies reported multiple measurements at a given study site, while some studies included results from more than one site. From these reports, the overall median value for each location category was calculated...
Resumo:
Vertical graphene nanosheets have advantages over their horizontal counterparts, primarily due to the larger surface area available in the vertical systems. Vertical sheets can accommodate more functional particles, and due to the conduction and optical properties of thin graphene, these structures can find niche applications in the development of sensing and energy storage devices. This work is a combined experimental and theoretical study that reports on the synthesis and optical responses of vertical sheets decorated with gold nanoparticles. The findings help in interpreting optical responses of these hybrid graphene structures and are relevant to the development of future sensing platforms.
Resumo:
Biolistic delivery of transforming DNA into fungal genomes, especially when performed on uninucleate haploid conidia, has proven successful in bypassing the time-consuming repetitive purification of protoplasts used for the widely applied polyethylene glycol-mediated method. Biolistic transformation is also relatively quick compared to other available methods and provides a high percentage of stable transformants.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.