200 resultados para Pavements, Porous


Relevância:

10.00% 10.00%

Publicador:

Resumo:

People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal seam gas (CSG) waters are a by-product of natural gas extraction from un derground coal seams. The main issue with these waters is their elevated sodium content, which in conjunction with their low calcium and magnesium concentrations can generate soil infiltration problems in the long run , as well as short term toxicity effects in plants due to the sodium ion itself. Zeolites are minerals having a porous structure, crystalline characteristics, and an alumino-silicate configuration resulting in an overall negative charge which is balanced by loosely held cations. In New Zealand, Ngakuru zeolites have been mined for commercial use in wastewater treatment applications, cosmetics, and pet litter. This research focuses on assessing the capacity of Ngakuru zeolites to reduce sodium concentrations of CSG waters from Maramarua. Batch and column test (flow through) experiments revealed that Ngakuru zeolites are capable of sorbing sodium cations from concentrated solutions of sodium. In b atch tests, the sodium adsorption capacity ranged from 5.0 to 34.3meq/100g depending on the solution concentration and on the number of times the zeolite had been regenerated. Regeneration with CaCl2 was foun d to be effective. The calculated sodium adsorption capacity of Ngakuru zeolites under flow-through conditions ranged from 11 to 42meq/100g depending on the strength of the solution being treated and on w hether the zeolites had been previously regenerated. The slow kinetics and low cost of the zeolities, coupled with potentially remote sites for gas extraction, could make semi-batch operational processes without regeneration more favourable than in more industrial ion exchange situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer networks were prepared by photocross-linking fumaric acid monoethyl ester (FAME) functionalized, three-armed poly(D,L-lactide) oligomers using Af-vinyl-2-pyrrolidone (NVP) as diluent and comonomer. The use of NVP together with FAME-functionalized oligomers resulted in copolymerization at high rates, and networks with gel contents in excess of 90 were obtained. The hydrophilicity of the poly(D,L-lactide) networks increases with increasing amounts of NVP, networks containing 50 wt of NVP absorbed 40 of water. As the amount of NVP was increased from 30 to 50 wt , the Young's modulus after equilibration in water decreased from 0.8 to 0.2 GPa, as opposed to an increase from 1.5 to 2.1 GPa in the dry state. Mouse preosteoblasts readily adhered and spread onto all prepared networks. Using stereolithography, porous structures with a well-defined gyroid architecture were prepared from these novel materials. This allows the preparation of tissue engineering scaffolds with optimized pore architecture and tunable material properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(D,L-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photocrosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high molecular weight poly(D,L-lactide). A resin based on a 2-armed poly(D,L-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photocrosslinked networks. The proliferation rate on these materials was comparable to that on high molecular weight poly(D,L-lactide) and tissue culture polystyrene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s. Although many other techniques have been developed since then, stereolithography remains one of the most powerful and versatile of all SFF techniques. It has the highest fabrication accuracy and an increasing number of materials that can be processed is becoming available. In this paper we discuss the characteristic features of the stereolithography technique and compare it to other SFF techniques. The biomedical applications of stereolithography are reviewed, as well as the biodegradable resin materials that have been developed for use with stereolithography. Finally, an overview of the application of stereolithography in preparing porous structures for tissue engineering is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technologies employed for the preparation of conventional tissue engineering scaffolds restrict the materials choice and the extent to which the architecture can be designed. Here we show the versatility of stereolithography with respect to materials and freedom of design. Porous scaffolds are designed with computer software and built with either a poly(d,l-lactide)-based resin or a poly(d,l-lactide-co-ε-caprolactone)-based resin. Characterisation of the scaffolds by micro-computed tomography shows excellent reproduction of the designs. The mechanical properties are evaluated in compression, and show good agreement with finite element predictions. The mechanical properties of scaffolds can be controlled by the combination of material and scaffold pore architecture. The presented technology and materials enable an accurate preparation of tissue engineering scaffolds with a large freedom of design, and properties ranging from rigid and strong to highly flexible and elastic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the fabrication of osteochondral tissue engineering scaffolds, the two distinct tissues impose different requirements on the architecture. Stereo-lithography is a rapid prototyping method that can be utilised to make 3D constructs with high spatial control by radical photopolymerization. In this study, biodegradable resins are developed that can be applied in stereo-lithography. Photo-crosslinked poly(lactide) networks with varying physical properties were synthesised, and by photo polymerizing in the presence of leachable particles porous scaffolds could be prepared as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of porous structures as tissue engineering scaffolds imposes demands on structural parameters such as porosity, pore size and interconnectivity. For the structural analysis of porous scaffolds, micro-computed tomography (μCT) is an ideal tool. μCT is a 3D X-ray imaging method that has several advantages over scanning electron microscopy (SEM) and other conventional characterisation techniques: • visualisation in 3D • quantitative results • non-destructiveness • minimal sample preparation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of porous structures as tissue engineering scaffolds imposes high demands on the pore architecture. Stereolithography is a rapid prototyping method based on photo-polymerisation, that can be utilised to make 3D constructs with high spatial control. In this study, biodegradable resins were developed that can find application in stereolithography. Poly(D,L-lactide) (PDLLA) oligomers were synthesised and functionalised with methacrylate end-groups. By mixing the resulting macromers with a diluent, photo-initiator and inhibitor, lowviscosity resins were obtained that were photocrosslinked to yield stiff and strong degradable poly(lactide) networks. Also, porous scaffolds were fabricated on a stereolithography apparatus (SLA) from a nondegradable resin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In tissue engineering, porous scaffolds are used as a temporal support for tissue regeneration through cell adhesion, proliferation and differentiation. Besides applying a suitable material that is both biocompatible and biodegradable, the architectural design of the porous scaffold can be of essential for successful tissue regeneration. The architecture is of great influence on mechanical properties and transport properties of nutrients and metabolites1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxyapatite (HAP) is a major component of bone and has osteoconductive and -inductive properties. It has been successfully applied as a substrate in bone tissue engineering, either with or without a biodegradable polymer such as polycaprolactone or polylactide. Recently, we have developed a stereolithography resin based on poly(D,L-lactide) (PDLLA) and a non-reactive diluent, that allows for the preparation of tissue engineering scaffolds with designed architectures. In this work, designed porous composite structures of PDLLA and HAP are prepared by stereolithography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

xpanding human chondrocytes in vitro while maintaining their ability to form cartilage remains a key challenge in cartilage tissue engineering. One promising approach to address this is to use microcarriers as substrates for chondrocyte expansion. While microcarriers have shown beneficial effects for expansion of animal and ectopic human chondrocytes, their utility has not been determined for freshly isolated adult human articular chondrocytes. Thus, we investigated the proliferation and subsequent chondrogenic differentiation of these clinically relevant cells on porous gelatin microcarriers and compared them to those expanded using traditional monolayers. Chondrocytes attached to microcarriers within 2 days and remained viable over 4 weeks of culture in spinner flasks. Cells on microcarriers exhibited a spread morphology and initially proliferated faster than cells in monolayer culture, however, with prolonged expansion they were less proliferative. Cells expanded for 1 month and enzymatically released from microcarriers formed cartilaginous tissue in micromass pellet cultures, which was similar to tissue formed by monolayer-expanded cells. Cells left attached to microcarriers did not exhibit chondrogenic capacity. Culture conditions, such as microcarrier material, oxygen tension, and mechanical stimulation require further investigation to facilitate the efficient expansion of clinically relevant human articular chondrocytes that maintain chondrogenic potential for cartilage regeneration applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.