485 resultados para Learning algorithms
Resumo:
Schools in Queensland, Australia, are undergoing inclusive education reform, following the report of the Ministerial Taskforce on Inclusive Education (Students with Disabilities) in 2004. The State government’s responses to the taskforce report emphasise a commitment to social justice and equity so that all students can be included in ways that enable them to achieve their potential. Teacher aides are employed in schools as ancillary staff to support students with disabilities and learning difficulties. Their support roles in schools are emerging within an educational context in which assumptions about disability, difference and inclusion of students with disabilities and learning difficulties are changing. It is important to acknowledge teacher aides as support practitioners, and to understand their roles in relation to the inclusion of students with disabilities and learning difficulties as inclusive education reform continues. This study used a phenomenological approach to explore the lived experiences of teacher aides as they supported students with disabilities and learning difficulties in primary schools. Four key insights into the support roles of teacher aides in primary schools in Brisbane, Queensland emerged from the study: 1) teacher aides develop empathetic relationships with students that contribute significantly to the students’ sense of belonging within school communities; 2) lack of clear definition of roles and responsibilities for teacher aides has detrimental effects on inclusion of students; 3) collaborative planning and implementation of classroom learning and socialisation programs enhances inclusion; and 4) teacher aides learn about supporting students while on-the-job, and in consultation and collaboration with other members of the students’ support networks.
Resumo:
Universities are increasingly caught in the transition between college institutions of independant academics to become managed businesses of research and teaching and learning. This is introducing substantial issues with the work, approach and personal development needs of individual academics. It is causing even greater concerns for managers within universities. The developments in University Management have increasingly become driven towards issues of finance, quality and marketing. Organizational development in teaching and learning practices has been less commonly a point of focus. This paper outlines developments of this nature at the University of Salford. Through its combination of authors it does so at whole University, Faculty and School levels. It outlines the variety of ways in which teaching and learning developments can be supported within an organisation.
Resumo:
Within an action research framework, this paper describes the conceptual basis for developing a crossdisciplinary pedagogical model of higher education/industry engagement for the built environment design disciplines including architecture, interior design, industrial design and landscape architecture. Aiming to holistically acknowledge and capitalize on the work environment as a place of authentic learning, problems arising in practice are understood as the impetus, focus and ‘space’ for a process of inquiry and discovery that, in the spirit of Boyer’s ‘Scholarship of Integration’, provides for generic as well as discipline-specific learning.
Resumo:
-
Resumo:
This paper explores how game authoring tools can teach processes that transform everyday places into engaging learning spaces. It discusses the motivation inherent in playing games and creating games for others, and how this stimulates an iterative process of creation and reflection and evokes a natural desire to engage in learning. The use of MiLK at the Adelaide Botanic Gardens is offered as a case in point. MiLK is an authoring tool that allows students and teachers to create and share SMS games for mobile phones. A group of South Australian high school students used MiLK to play a game, create their own games and play each other’s games during a day at the gardens. This paper details the learning processes involved in these activities and how the students, without prompting, reflected on their learning, conducted peer assessment, and engaged in a two-way discussion with their teacher about new technologies and their implications for learning. The paper concludes with a discussion of the needs and requirements of 21st century learners and how MiLK can support constructivist and connectivist teaching methods that engage learners and will produce an appropriately skilled future workforce.
Resumo:
This paper suggests ways for educators and designers to understand and merge priorities in order to inform the development of mobile learning (m-learning) applications that maximise user experiences and hence learning opportunities. It outlines a User Experience Design (UXD) theory and development process that requires designers to conduct a thorough initial contextual inquiry into a particular domain in order to set project priorities and development guidelines. A matrix that identifies the key contextual considerations namely the social, cultural, spatial, technical and temporal constructs of any domain is presented as a vital tool for achieving successful UXD. The frame of reference provided by this matrix ensures that decisions made throughout the design process are attributable to a desired user experience. To illustrate how the proposed UXD theory and development process supports the creation of effective m-learning applications, this paper documents the development process of MILK (Mobile Informal Learning Kit). MILK is a support tool that allows teachers and students to develop event paths that consist of a series SMS question and answer messages that lead players through a series of checkpoints between point A and point B. These event paths can be designed to suit desired learning scenarios and can be used to explore a particular place or subject. They can also be designed to facilitate formal or informal learning experiences.
Resumo:
Information and communication technology (ICT) curriculum integration is the apparent goal of an extensive array of educational initiatives in all Australian states and territories. However, ICT curriculum integration is neither value neutral nor universally understood. The literature indicates the complexity of rationales and terminology that underwrite various initiatives; various dimensions and stages of integration; inherent methodological difficulties; obstacles to integration; and significant issues relating to teacher professional development and ICT competencies (Jamieson-Proctor, Watson, & Finger, 2003). This paper investigates the overarching question: Are ICT integration initiatives making a significant impact on teaching and learning in Queensland state schools? It reports the results from a teacher survey that measures the quantity and quality of student use of ICT. Results from 929 teachers across all year levels and from 38 Queensland state schools indicate that female teachers (73% of the full time teachers in Queensland state schools in 2005) are significantly less confident than their male counterparts in using ICT with students for teaching and learning, and there is evidence of significant resistance to using ICT to align curriculum with new times and new technologies. This result supports the hypothesis that current initiatives with ICT are having uneven and less than the desired results system wide. These results require further urgent investigation in order to address the factors that currently constrain the use of ICT for teaching and learning.
Resumo:
This thesis reports the outcomes of an investigation into students’ experience of Problem-based learning (PBL) in virtual space. PBL is increasingly being used in many fields including engineering education. At the same time many engineering education providers are turning to online distance education. Unfortunately there is a dearth of research into what constitutes an effective learning experience for adult learners who undertake PBL instruction through online distance education. Research was therefore focussed on discovering the qualitatively different ways that students experience PBL in virtual space. Data was collected in an electronic environment from a course, which adopted the PBL strategy and was delivered entirely in virtual space. Students in this course were asked to respond to open-ended questions designed to elicit their learning experience in the course. Data was analysed using the phenomenographical approach. This interpretative research method concentrated on mapping the qualitative differences in students’ interpretations of their experience in the course. Five qualitatively different ways of experiencing were discovered: Conception 1: ‘A necessary evil for program progression’; Conception 2: ‘Developing skills to understand, evaluate, and solve technical Engineering and Surveying problems’; Conception 3: ‘Developing skills to work effectively in teams in virtual space’; Conception 4: ‘A unique approach to learning how to learn’; Conception 5: ‘Enhancing personal growth’. Each conception reveals variation in how students attend to learning by PBL in virtual space. Results indicate that the design of students’ online learning experience was responsible for making students aware of deeper ways of experiencing PBL in virtual space. Results also suggest that the quality and quantity of interaction with the team facilitator may have a significant impact on the student experience in virtual PBL courses. The outcomes imply pedagogical strategies can be devised for shifting students’ focus as they engage in the virtual PBL experience to effectively manage the student learning experience and thereby ensure that they gain maximum benefit. The results from this research hold important ramifications for graduates with respect to their ease of transition into professional work as well as their later professional competence in terms of problem solving, ability to transfer basic knowledge to real-life engineering scenarios, ability to adapt to changes and apply knowledge in unusual situations, ability to think critically and creatively, and a commitment to continuous life-long learning and self-improvement.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
Though technology holds significant promise for enhanced teaching and learning it is unlikely to meet this promise without a principled approach to course design. There is burgeoning discourse about the use of technological tools and models in higher education, but much of the discussion is fixed upon distance learning or technology based courses. This paper will develop and propose a balanced model for effective teaching and learning for “on campus” higher education, with particular emphasis on the opportunities for revitalisation available through the judicious utilisation of new technologies. It will explore the opportunities available for the creation of more authentic learning environments through the principled design. Finally it will demonstrate with a case study how these have come together enabling the creation of an effective and authentic learning environment for one pre-service teacher education course at the University of Queensland.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.