162 resultados para Colloid cyst


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between a model drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from dry powder inhaler (DPI) formulations. Model silica probes of approximately 4 lm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres pre-attached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/ hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconducting properties of nanoparticle coating on liquid metal marbles can present opportunities for an additional dimension of control on these soft objects with functional surfaces in aqueous environments. We show the unique differences in the electrochemical actuation mechanisms of liquid metal marbles with n- and p-type semiconducting nanomaterial coating. A systematic study on such liquid metal marbles shows voltage dependent nanoparticle cluster formation and morphological changes of the liquid metal core during electrochemical actuations and these observations are unique to p-type nanomaterial coated liquid metal marbles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective To identify cytomorphological patterns of metastatic melanoma (MM) in breast fine needle aspiration (FNA) specimens and highlight the differential diagnoses and features most useful in identifying MM. Methods The clinical, radiological and FNA findings of 16 cases were reviewed. Cytological features evaluated related to cell arrangement, size and shape of cells, nuclear and cytoplasmic features, and the presence or absence of necrosis. Results The series consisted of 14 females and two males, ranging in age from 24 to 83 years (mean = 50 years). A previous history of melanoma was available in 12/16 (75%) cases at the time of FNA reporting; however the clinical/radiological impression in 4/16 cases was of a breast cyst. The cases were classified into six morphological variants: classical (8/16), pseudopapillary (3/16), spindle-cell (1/16), melanin-rich (1/16), pleomorphic (2/16) and lymphoma-like (1/16). The varying patterns raised a wide range of differential diagnoses; however, discohesion, binucleation and granular cytoplasm were the major features seen in 94% of all cases. In 14/16 cases (88%), plasmacytoid cells, prominent nucleoli and cytoplasmic vacuolation were identified. Melanin and multinucleation were detected in 44% of cases and intranuclear cytoplasmic invaginations in 63%. Necrosis was present in more than half of the cases (56%). Conclusion MM should be considered in the differential diagnosis of breast FNA specimens when atypical cells are seen that present as plasmacytoid cells in a dispersed or pseudopapillary pattern, or as spindle, pleomorphic or pigmented cells. These features, combined with clinical history and immunocytochemistry, may assist in correctly identifying MM and directing optimal treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The introduction of Patient Group Directions (PGD) has changed significantly the way in which nurses can now administer prescription only medicines as a one-off for patients requiring this level of service. PGD’s are a written authority to administer drugs to patients that are not identified at the time of treatment. Aim: The aim of this project was to develop a PGD for use within an Outreach team to administer colloid boluses to patients presenting with hypovolemia. Method: Using a case exemplar this paper will discuss the development of a PGD using aspects of transitional change theory to highlight the potential barriers that were encountered. Implications for Practice: The implications for this PGD are wide reaching. First it now enables members from the nursing Outreach team to administer colloid fluid boluses to a prescribed patient cohort without the need for prescription. Second, it ensures the deteriorating patient has interventions initiated in a timely and appropriate manner to reduce inadvertent admission to high care areas. Last, it will improve inter-professional team-working and communication so much so that collaborative patient care reduces health costs and identifies earlier those patients requiring substantially greater nursing and medical input. Conclusion: The experience of developing a working PGD for fluid administration has meant that the Outreach team is able to respond to patients in a more effective way. In addition, it is the experience of developing this PGD that has enabled the team to contemplate other PGD’s in the execution of Outreach work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The controlled synthesis of nanostructured materials remains an ongoing area of research, especially as the size, shape and composition of nanomaterials can greatly influence their properties and applications. In this work we present the electrodeposition of highly dendritic platinum rich platinum-lead nanostructures, where lead acetate acts as an inorganic shape directing agent via underpotential deposition on the growing electrodeposit. It was found that these nanomaterials readily oxidise at potentials below monolayer oxide formation, which significantly impacts on the methanol electrooxidation reaction and correlates with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. Additionally these materials were tested for their surface enhanced Raman scattering (SERS) activity, where the high density of sharp tips provides promise for their application as SERS substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports a hybrid of two metal-organic semiconductors that are based on organic charge transfer complexes of 7,7,8,8-tetracyanoquinodimethane (TCNQ). It is shown that the spontaneous reaction between semiconducting microrods of CuTCNQ with Ag+ ions leads to the formation of a CuTCNQ/AgTCNQ hybrid, both in aqueous solution and acetonitrile, albeit with completely different reaction mechanisms. In an aqueous environment, the reaction proceeds by a complex galvanic replacement (GR) mechanism, wherein in addition to AgTCNQ nanowires, Ag0 nanoparticles and Cu(OH)2 crystals decorate the surface of CuTCNQ microrods. Conversely, in acetonitrile, a GR mechanism is found to be thermodynamically unfavorable and instead a corrosion-recrystallization mechanism leads to the decoration of CuTCNQ microrods with AgTCNQ nanoplates, resulting in a pure CuTCNQ/AgTCNQ hybrid metal-organic charge transfer complex. While hybrids of two different inorganic semiconductors are regularly reported, this report pioneers the formation of a hybrid involving two metal-organic semiconductors that will expand the scope of TCNQ-based charge transfer complexes for improved catalysis, sensing, electronics and biological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaolinite naturally occurs in the plate form for the interlayer hydrogen bond and the distortion and adaption of tetrahedron and octahedron. But kaolinite sheets can be exfoliated to nanoscrolls artificially in laboratory through multiple-step displacement intercalation. The driving force for kaolinite sheet to be curled nanoscroll originates from the size discrepancy of Si–O tetrahedron and Al–O octahedron. The displacement intercalation promoted the platy kaolinite sheets spontaneously to be scrolled by eliminating the interlayer hydrogen bond and atomic interaction. Kaolinite nanoscrolls are hollow tubes with outer face of tetrahedral sheet and inner face of octahedral sheet. Based on the theoretical calculation it is firstly reported that the minimum interior diameter for a single kaolinite sheet to be scrolled is about 9.08 nm, and the optimal 24.30 nm, the maximum 100 nm, which is verified by the observation of scanning electron microscope and transmission electron microscope. The different adaption types and discrepancy degree between tetrahedron and octahedron generate various curling forces in different directions. The nanoscroll axes prefer the directions as [100], [1 �10], [110], [3 �10], and the relative curling force are as follows, [3 �10] > [100] = [1�10] > [110].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activitydue to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt% incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material, which induces an optical response. Here, we demonstrate the optical hydrogen gas (H¬2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collisions between colloidal metal nanoparticles and a carbon electrode were explored as a dynamic method for the electrodeposition of a diverse range of electrocatalytically active Ag and Au nanostructures whose morphology is dominated by the electrostatic interaction between the charge of the nanoparticle and metal salt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.