324 resultados para motion cueing algorithm (MCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A virtual fence is created by applying an aversive stimulus to an animal when it approaches a predefined boundary. It is implemented by a small animal-borne computer system with a GPS receiver. This approach allows the implementation of virtual paddocks inside a normal physically-fenced paddock. Since the fence lines are virtual they can be moved by programming to meet the needs of animal or land management. This approach enables us to consider animals as agents with natural mobility that are controllable and to apply a vast body of theory in motion planning. In this paper we describe a herd-animal simulator and physical experiments conducted on a small herd of 10 animals using a Smart Collar. The Smart Collar consists of a GPS, PDA, wireless networking and a sound amplifier. We describe a motion planning algorithm that can move a virtual paddock subject to landscape constraints which is suitable for mustering cows. We present simulation results and data from experiments with 8 cows equipped with Smart Collars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an object tracking system that utilises a hybrid multi-layer motion segmentation and optical flow algorithm. While many tracking systems seek to combine multiple modalities such as motion and depth or multiple inputs within a fusion system to improve tracking robustness, current systems have avoided the combination of motion and optical flow. This combination allows the use of multiple modes within the object detection stage. Consequently, different categories of objects, within motion or stationary, can be effectively detected utilising either optical flow, static foreground or active foreground information. The proposed system is evaluated using the ETISEO database and evaluation metrics and compared to a baseline system utilising a single mode foreground segmentation technique. Results demonstrate a significant improvement in tracking results can be made through the incorporation of the additional motion information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silhouettes are common features used by many applications in computer vision. For many of these algorithms to perform optimally, accurately segmenting the objects of interest from the background to extract the silhouettes is essential. Motion segmentation is a popular technique to segment moving objects from the background, however such algorithms can be prone to poor segmentation, particularly in noisy or low contrast conditions. In this paper, the work of [3] combining motion detection with graph cuts, is extended into two novel implementations that aim to allow greater uncertainty in the output of the motion segmentation, providing a less restricted input to the graph cut algorithm. The proposed algorithms are evaluated on a portion of the ETISEO dataset using hand segmented ground truth data, and an improvement in performance over the motion segmentation alone and the baseline system of [3] is shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent algorithms for monocular motion capture (MoCap) estimate weak-perspective camera matrices between images using a small subset of approximately-rigid points on the human body (i.e. the torso and hip). A problem with this approach, however, is that these points are often close to coplanar, causing canonical linear factorisation algorithms for rigid structure from motion (SFM) to become extremely sensitive to noise. In this paper, we propose an alternative solution to weak-perspective SFM based on a convex relaxation of graph rigidity. We demonstrate the success of our algorithm on both synthetic and real world data, allowing for much improved solutions to marker less MoCap problems on human bodies. Finally, we propose an approach to solve the two-fold ambiguity over bone direction using a k-nearest neighbour kernel density estimator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle. Indeed, due to the vehicles' design and the actuation modes usually under consideration for underwater plateforms the number of actuator switchings must be kept to a small value to insure feasibility and precision. This is the main objective of the algorithm presented in this paper. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six-degrees-of freedom and one is minimally actuated with control motions in the vertical plane only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employed a novel cuing paradigm to assess whether dynamically versus statically presented facial expressions differentially engaged predictive visual mechanisms. Participants were presented with a cueing stimulus that was either the static depiction of a low intensity expressed emotion; or a dynamic sequence evolving from a neutral expression to the low intensity expressed emotion. Following this cue and a backwards mask, participants were presented with a probe face that displayed either the same emotion (congruent) or a different emotion (incongruent) with respect to that displayed by the cue although expressed at a high intensity. The probe face had either the same or different identity from the cued face. The participants' task was to indicate whether or not the probe face showed the same emotion as the cue. Dynamic cues and same identity cues both led to a greater tendency towards congruent responding, although these factors did not interact. Facial motion also led to faster responding when the probe face was emotionally congruent to the cue. We interpret these results as indicating that dynamic facial displays preferentially invoke predictive visual mechanisms, and suggest that motoric simulation may provide an important basis for the generation of predictions in the visual system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel path planning method for minimizing the energy consumption of an autonomous underwater vehicle subjected to time varying ocean disturbances and forecast model uncertainty. The algorithm determines 4-Dimensional path candidates using Nonlinear Robust Model Predictive Control (NRMPC) and solutions optimised using A*-like algorithms. Vehicle performance limits are incorporated into the algorithm with disturbances represented as spatial and temporally varying ocean currents with a bounded uncertainty in their predictions. The proposed algorithm is demonstrated through simulations using a 4-Dimensional, spatially distributed time-series predictive ocean current model. Results show the combined NRMPC and A* approach is capable of generating energy-efficient paths which are resistant to both dynamic disturbances and ocean model uncertainty.