502 resultados para experimental film
Resumo:
This practice-led research project analyses the creative and critical processes that occur when women visual artists respond to the legacy of colonisation. The research investigates the practices of selected visual artists, interrogates the candidate's creative practice, and analyses interview data. The creative practice component of the research analyses the critical and artistic strategies undertaken to produce an original set of six moving image artworks entitled Sankɔfa Dreaming. The creative practice develops an original artist method, Re-imagining Legacy. This method produces multivalent artworks that express a dynamic set of integrated critical standpoints on legacy and re-imaginings of history.
Resumo:
'Delivery' (2005) was an installation work at MetroArts, Brisbane that incorporated drawings, paintings, video projections and temporary architectural structures. The work made central use out of a mock public event, staged in a Gold Coast park by the artist. Documentary footage of the ambiguous event comprised one of the video projections and formed the basic iconographic palette upon which the rest of the works were based. Using 3D animation as well as conventional drawing and paintign approaches, the works conveyed a palpable sense of fragmentation and social dislocation - a quality that was heightened by the reflective panels that bisected the exhibition space. The work was [part of the MetroArts Artistic Program in 2005 and its video elements were included in the 2008 exhibition Video Ground, curated by Rachel O'Reilly for Multimedia Art Asia Pacific (MAAP)/Bangkok Experimental Film Festival (Touring show). The work was the subject of a feature article by Mark Pennings in Eyeline magazine, and also appeared on the front cover of that issue.
Resumo:
This study surveys and interrogates key conceptual frameworks and artistic practises that flow through the distinct but interconnected traditions of non-narrative film and experimental music, and examines how these are articulated in my own creative sound practise.
Resumo:
The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.
Resumo:
This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.
Resumo:
The Analytical Electron Microscope (AEM), with which secondary X-ray emission from a thin (<150nm), electron-transparent material is measured, has rapidly become a versatile instrument for qualitative and quantitative elemental analyses of many materials, including minerals. With due regard for sources of error in experimental procedures, it is possible to obtain high spatial resolution (~20nm diameter) and precise elemental analyses (~3% to 5% relative) from many silicate minerals. In addition, by utilizing the orientational dependence of X-ray emission for certain multi-substituted crystal structures, site occupancies for individual elements within a unit cell can be determined though with lower spatial resolution. The relative ease with which many of these compositional data may be obtained depends in part on the nature of the sample, but, in general, is comparable to other solid state analytical techniques such as X-ray diffraction and electron microprobe analysis. However, the improvement in spatial resolution obtained with the AEM (up to two orders of magnitude in analysis diameter) significantly enhances interpretation of fine-grained assemblages in many terrestrial or extraterrestrial rocks.
Resumo:
A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. Made by Motion is a collaboration between digital artist Paul Van Opdenbosch and performer and choreographer Elise May; a series of studies on captured motion data used to generate experimental visual forms that reverberate in space and time. The project investigates the invisible forces generated by and influencing the movement of a dancer. Along with how the forces can be captured and applied to generating visual outcomes that surpass simple data visualisation, projecting the intent of the performer’s movements. The source or ‘seed’ comes from using an Xsens MVN – Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. In my presentation I will be displaying and discussing a selected creative works from the project along with the process and considerations behind the work.
Resumo:
Women’s Experimental Cinema provides lively introductions to the work of fifteen avant-garde women filmmakers, some of whom worked as early as the 1950s and many of whom are still working today. In each essay in this collection, a leading film scholar considers a single filmmaker, supplying biographical information, analyzing various influences on her work, examining the development of her corpus, and interpreting a significant number of individual films. The essays rescue the work of critically neglected but influential women filmmakers for teaching, further study, and, hopefully, restoration and preservation. Just as importantly, they enrich the understanding of feminism in cinema and expand the terrain of film history, particularly the history of the American avant-garde.
Resumo:
The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.
Resumo:
Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.
Resumo:
In 2012, the Brisbane International Film Festival officially came of age, celebrating its twenty-first birthday. The festival has emerged from a tumultuous adolescence and redefined its position on the Australian festival circuit as an advocate of locally made films and documentary filmmaking in particular. Brisbane’s International Film Festival opened in 1992 and has since been attended by more than 400,000 filmgoers. The festival is held annually and showcases a diverse range of feature films, documentaries, short films, animation and experimental work, children’s films and retrospectives.
Resumo:
In 2013 QUT Interior Design and Fashion Disciplines partnered to design the Catwalk for the QUT After Darkly Graduate Fashion Show. The ephemeral work (catwalk canopy and cinematic affects) was developed through collaboration between the authors based upon an undergraduate interior design unit ‘Filmic Interiors’ in which students were tasked with designing a fashion show. Filmic Interiors exploited the potential of film to influence, understand, and develop novel interior spaces through consideration of mise-en-scene, cinematic effects and atmospheric design strategies engaged by key film directors Jean Pierre Jeunet and Darren Aronofsky. The design outcome represents a hybridisation of student design proposals, contemplating both film and emerging collections from graduate fashion students. The work explored a number of iterations each testing material qualities and immaterial cinematic affects, as a means to develop new space. The process was led by experimentation undertaken by the designers through previous studio explorations surrounding the theme of ‘Strange Space’ and design practice ‘Making Strange’(Lindquist & Pytel, 2012). In doing so, the work paralleled the material formations of ‘obsessive collections’ and ‘making do’ evident in Jeunet’s scenography, rendering uncanny hybrid space (Ezra, 2008). Evocation of the immaterial found in much of director Aronofsky’s work, also became critical in the atmospheric experience intended for the show. This paper explores the process of collaboration and material experimentation in design, approached through a filmic lens. It provides insight into what happens when one enters into what can be termed an ‘ecology of production’, whereby the experimental making becomes the collaborative agent between designers, disciplines, and between stage and spectators. Finally it underlines the importance of ‘finding the work’ through material making and testing rather than through more controlled formalistic responses.
Resumo:
This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.