556 resultados para Stressful Work Simulation
Resumo:
Two experimental studies were conducted to examine whether the stress-buffering effects of behavioral control on work task responses varied as a function of procedural information. Study 1 manipulated low and high levels of task demands, behavioral control, and procedural information for 128 introductory psychology students completing an in-basket activity. ANOVA procedures revealed a significant three-way interaction among these variables in the prediction of subjective task performance and task satisfaction. It was found that procedural information buffered the negative effects of task demands on ratings of performance and satisfaction only under conditions of low behavioral control. This pattern of results suggests that procedural information may have a compensatory effect when the work environment is characterized by a combination of high task demands and low behavioral control. Study 2 (N=256) utilized simple and complex versions of the in-basket activity to examine the extent to which the interactive relationship among task demands, behavioral control, and procedural information varied as a function of task complexity. There was further support for the stress-buffering role of procedural information on work task responses under conditions of low behavioral control. This effect was, however, only present when the in-basket activity was characterized by high task complexity, suggesting that the interactive relationship among these variables may depend on the type of tasks performed at work.
Resumo:
Recent developments in wearable ECG technology have seen renewed interest in the use of Heart Rate Variability (HRV) feedback for stress management. Yet, little is know about the efficacy of such interventions. Positive reappraisal is an emotion regulation strategy that involves changing the way a situation is construed to decrease emotional impact. We sought to test the effectiveness of an intervention that used feedback on HRV data to prompt positive reappraisal during a stressful work task. Participants (N=122) completed two 20-minute trials of an inbox activity. In-between the first and the second trial participants were assigned to the waitlist control condition, a positive reappraisal via psycho-education condition, or a positive reappraisal via HRV feedback condition. Results revealed that using HRV data to frame a positive reappraisal message is more effective than using psycho-education (or no intervention)–especially for increasing positive mood and reducing arousal.
Resumo:
The objective of this experimental study is to capture the dynamic temporal processes that occur in changing work settings and to test how work control and individuals' motivational predispositions interact to predict reactions to these changes. To this aim, we examine the moderating effects of global self-determined and non-self-determined motivation, at different levels of work control, on participants' adaptation and stress reactivity to changes in workload during four trials of an inbox activity. Workload was increased or decreased at Trial 3, and adaptation to this change was examined via fluctuations in anxiety, coping, motivation, and performance. In support of the hypotheses, results revealed that, for non-self-determined individuals, low work control was stress-buffering and high work control was stress-exacerbating when predicting anxiety and intrinsic motivation. In contrast, for self-determined individuals, high work control facilitated the adaptive use of planning coping in response to a change in workload. Overall, this pattern of results demonstrates that, while high work control was anxiety-provoking and demotivating for non-self-determined individuals, self-determined individuals used high work control to implement an adaptive antecedent-focused emotion regulation strategy (i.e., planning coping) to meet situational demands. Other interactive effects of global motivation emerged on anxiety, active coping, and task performance. These results and their practical implications are discussed.
Resumo:
This study investigated the effects of workload, control, and general self-efficacy on affective task reactions (i.e., demands-ability fit, active coping, and anxiety) during a work simulation. The main goals were: (1) to determine the extent general self-efficacy moderates the effects of demand and control on affective task reactions, and; (2) to determine if this varies as a function of changes in workload. Participants (N=141) completed an inbox activity under conditions of low or high control and within low and high workload conditions. The order of trials varied so that workload increased or decreased. Results revealed individuals with high general self-efficacy reported better demands-abilities fit and active coping as well as less anxiety. Three interactive effects were found. First, it was found that high control increased demands-abilities fit from trial 1 to trial 2, but only when workload decreased. Second, it was found that low efficacious individuals active coping increased in trial 2, but only under high control. Third, it was found that high control helped high efficacious individuals manage anxiety when workload decreased. However, for individuals with low general self-efficacy, neither high nor low control alleviated anxiety (i.e., whether workload increased or decreased over time).
Resumo:
This experiment examined whether trait regulatory focus moderates the effects of task control on stress reactions during a demanding work simulation. Regulatory focus describes two ways in which individuals self-regulate toward desired goals: promotion and prevention. As highly promotion-focused individuals are oriented toward growth and challenge, it was expected that they would show better adaptation to demanding work under high task control. In contrast, as highly prevention-focused individuals are oriented toward safety and responsibility they were expected to show better adaptation under low task control. Participants (N = 110) completed a measure of trait regulatory focus and then three trials of a demanding inbox activity under either low, neutral, or high task control. Heart rate variability (HRV), affective reactions (anxiety & task dissatisfaction), and task performance were measured at each trial. As predicted, highly promotion-focused individuals found high (compared to neutral) task control stress-buffering for performance. Moreover, highly prevention-focused individuals found high (compared to low) task control stress-exacerbating for dissatisfaction. In addition, highly prevention-focused individuals found low task control stress-buffering for dissatisfaction, performance, and HRV. However, these effects of low task control for highly prevention-focused individuals depended on their promotion focus.
Resumo:
We investigate the extent to which individuals’ global motivation (self-determined and non-self-determined types) influences adjustment (anxiety, positive reappraisal) and engagement (intrinsic motivation, task performance) in reaction to changes to the level of work control available during a work simulation. Participants (N = 156) completed 2 trials of an inbox activity under conditions of low or high work control—with the ordering of these levels varied to create an increase, decrease, or no change in work control. In support of the hypotheses, results revealed that for more self-determined individuals, high work control led to the increased use of positive reappraisal. Follow-up moderated mediation analyses revealed that the increases in positive reappraisal observed for self-determined individuals in the conditions in which work control was high by Trial 2 consequently increased their intrinsic motivation toward the task. For more non-self-determined individuals, high work control (as well as changes in work control) led to elevated anxiety. Follow-up moderated mediation analyses revealed that the increases in anxiety observed for non-self-determined individuals in the high-to-high work control condition consequently reduced their task performance. It is concluded that adjustment to a demanding work task depends on a fit between individuals’ global motivation and the work control available, which has consequences for engagement with demanding work.
Resumo:
Aim The purpose of this study was to examine the relationship between registered nurses’ (RN) job satisfaction and their intention to leave critical care nursing in Saudi Arabia. Background Many studies have identified critical care areas as stressful work environments for nurses and have identified factors contributing to job satisfaction and staff retention. However, very little research has examined these relationships in the Saudi context. Design and Methods This study utilised an exploratory, cross-sectional survey design to examine the relationship between RN job satisfaction and intention to leave at King Abdul-Aziz University Hospital, Saudi Arabia. Respondents completed a self-administered survey including demographic items and validated measures of job satisfaction and intention to leave. A convenience sample of 182 RNs working in critical care areas during the data collection period were included. Results Regression analysis predicting RN intention to leave found that demographic variables including age, parental status and length of ICU experience, and three of the job satisfaction subscales including perceived workload, professional support and pay and prospects for promotion, were significantly associated with the outcome variable. Conclusion This study adds to the existing literature on the relationship between job satisfaction and intention to leave critical care areas among RNs working in Saudi Arabia. These findings point to the need for management and policy interventions targeting nurses’ workloads, professional support and pay and promotion in order to improve nurse retention.
Resumo:
Aim: In the current climate of medical education, there is an ever-increasing demand for and emphasis on simulation as both a teaching and training tool. The objective of our study was to compare the realism and practicality of a number of artificial blood products that could be used for high-fidelity simulation. Method: A literature and internet search was performed and 15 artificial blood products were identified from a variety of sources. One product was excluded due to its potential toxicity risks. Five observers, blinded to the products, performed two assessments on each product using an evaluation tool with 14 predefined criteria including color, consistency, clotting, and staining potential to manikin skin and clothing. Each criterion was rated using a five-point Likert scale. The products were left for 24 hours, both refrigerated and at room temperature, and then reassessed. Statistical analysis was performed to identify the most suitable products, and both inter- and intra-rater variability were examined. Results: Three products scored consistently well with all five assessors, with one product in particular scoring well in almost every criterion. This highest-rated product had a mean rating of 3.6 of 5.0 (95% posterior Interval 3.4-3.7). Inter-rater variability was minor with average ratings varying from 3.0 to 3.4 between the highest and lowest scorer. Intrarater variability was negligible with good agreement between first and second rating as per weighted kappa scores (K = 0.67). Conclusion: The most realistic and practical form of artificial blood identified was a commercial product called KD151 Flowing Blood Syrup. It was found to be not only realistic in appearance but practical in terms of storage and stain removal.
Resumo:
Discrete event-driven simulations of digital communication networks have been used widely. However, it is difficult to use a network simulator to simulate a hybrid system in which some objects are not discrete event-driven but are continuous time-driven. A networked control system (NCS) is such an application, in which physical process dynamics are continuous by nature. We have designed and implemented a hybrid simulation environment which effectively integrates models of continuous-time plant processes and discrete-event communication networks by extending the open source network simulator NS-2. To do this a synchronisation mechanism was developed to connect a continuous plant simulation with a discrete network simulation. Furthermore, for evaluating co-design approaches in an NCS environment, a piggybacking method was adopted to allow the control period to be adjusted during simulations. The effectiveness of the technique is demonstrated through case studies which simulate a networked control scenario in which the communication and control system properties are defined explicitly.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.
Resumo:
In this research the reliability and availability of fiberboard pressing plant is assessed and a cost-based optimization of the system using the Monte- Carlo simulation method is performed. The woodchip and pulp or engineered wood industry in Australia and around the world is a lucrative industry. One such industry is hardboard. The pressing system is the main system, as it converts the wet pulp to fiberboard. The assessment identified the pressing system has the highest downtime throughout the plant plus it represents the bottleneck in the process. A survey in the late nineties revealed there are over one thousand plants around the world, with the pressing system being a common system among these plants. No work has been done to assess or estimate the reliability of such a pressing system; therefore this assessment can be used for assessing any plant of this type.
Resumo:
SCAPE is an interactive simulation that allows teachers and students to experiment with sustainable urban design. The project is based on the Kelvin Grove Urban Village, Brisbane. Groups of students role play as political, retail, elderly, student, council and builder characters to negotiate on game decisions around land use, density, housing types and transport in order to design a sustainable urban community. As they do so, the 3D simulation reacts in real time to illustrate what the village would look like as well as provide statistical information about the community they are creating. SCAPE brings together education, urban professional and technology expertise, helping it achieve educational outcomes, reflect real-world scenarios and include sophisticated logic and decision making processes and effects.---------- The research methodology was primarily practice led underpinned by action research methods resulting in innovative approaches and techniques in adapting digital games and simulation technologies to create dynamic and engaging experiences in pedagogical contexts. It also illustrates the possibilities for urban designers to engage a variety of communities in the processes, complexities and possibilities of urban development and sustainability.
Resumo:
Farm It Right is an innovative creative work that simulates sustainable farming techniques using ecological models prepared by academics at Bradford University (School of Life Sciences). This interactive work simulates the farming conditions and options of our ancestors and demonstrates the direct impact their actions had on their environment and on the ’future of their cultures’ (Schmidt 2008). Specifically, the simulation allows users to explore and experiment with the complex relationships between environmental factors and human decision making within the harsh conditions of an early (9th century) Nordic farm. The simulation interface displays both statistical and graphical feedback in response to the users selections regarding animal reproduction rates, shelter provisions, food supplies etc. as well as demonstrating resulting impacts to soil erosion, water supply, animal population sizes etc.---------- 'Farm It Right' is now used at Bradford University (School of Life Sciences) as a dynamic e-Learning resource for incorporating environmental archaeology with sustainable development education, improving the engagement with complex data and the appreciation of human impacts on the environment and the future of their cultures. 'Farm It Right' is also demonstrated as an exemplar case study for interaction design students at Queensland University of Technology.
Resumo:
Background: The quality of stormwater runoff from ports is significant as it can be an important source of pollution to the marine environment. This is also a significant issue for the Port of Brisbane as it is located in an area of high environmental values. Therefore, it is imperative to develop an in-depth understanding of stormwater runoff quality to ensure that appropriate strategies are in place for quality improvement. ---------------- The Port currently has a network of stormwater sample collection points where event based samples together with grab samples are tested for a range of water quality parameters. Whilst this information provides a ‘snapshot’ of the pollutants being washed from the catchment/s, it does not allow for a quantifiable assessment of total contaminant loads being discharged to the waters of Moreton Bay. It also does not represent pollutant build-up and wash-off from the different land uses across a broader range of rainfall events which might be expected. As such, it is difficult to relate stormwater quality to different pollutant sources within the Port environment. ----------------- Consequently, this would make the source tracking of pollutants to receiving waters extremely difficult and in turn the ability to implement appropriate mitigation measures. Also, without this detailed understanding, the efficacy of the various stormwater quality mitigation measures implemented cannot be determined with certainty. --------------- Current knowledge on port stormwater runoff quality Currently, little knowledge exists with regards to the pollutant generation capacity specific to port land uses as these do not necessarily compare well with conventional urban industrial or commercial land use due to the specific nature of port activities such as inter-modal operations and cargo management. Furthermore, traffic characteristics in a port area are different to a conventional urban area. Consequently, as data inputs based on an industrial and commercial land uses for modelling purposes is questionable. ------------------ A comprehensive review of published research failed to locate any investigations undertaken with regards to pollutant build-up and wash-off for port specific land uses. Furthermore, there is very limited information made available by various ports worldwide about the pollution generation potential of their facilities. Published work in this area has essentially focussed on the water quality or environmental values in the receiving waters such as the downstream bay or estuary. ----------------- The Project: The research project is an outcome of the collaborative Partnership between the Port of Brisbane Corporation (POBC) and Queensland University of Technology (QUT). A key feature of this Partnership is the undertaking of ‘cutting edge’ research to strengthen the environmental custodianship of the Port area. This project aims to develop a port specific stormwater quality model to allow informed decision making in relation to stormwater quality improvement in the context of the increased growth of the Port. --------------- Stage 1 of the research project focussed on the assessment of pollutant build-up and wash-off using rainfall simulation from the current Port of Brisbane facilities with the longer-term objective of contributing to the development of ecological risk mitigation strategies for future expansion scenarios. Investigation of complex processes such as pollutant wash-off using naturally occurring rainfall events has inherent difficulties. These can be overcome using simulated rainfall for the investigations. ----------------- The deliverables for Stage 1 included the following: * Pollutant build-up and wash-off profiles for six primary land uses within the Port of Brisbane to be used for water quality model development. * Recommendations with regards to future stormwater quality monitoring and pollution mitigation measures. The outcomes are expected to deliver the following benefits to the Port of Brisbane: * The availability of Port specific pollutant build-up and wash-off data will enable the implementation of customised stormwater pollution mitigation strategies. * The water quality data collected would form the baseline data for a Port specific water quality model for mitigation and predictive purposes. * To be at the cutting-edge in terms of water quality management and environmental best practice in the context of port infrastructure. ---------------- Conclusions: The important conclusions from the study are: * It confirmed that the Port environment is unique in terms of pollutant characteristics and is not comparable to typical urban land uses. * For most pollutant types, the Port land uses exhibited lower pollutant concentrations when compared to typical urban land uses. * The pollutant characteristics varied across the different land uses and were not consistent in terms of the land use. Hence, the implementation of stereotypical structural water quality improvement devices could be of limited value. * The <150m particle size range was predominant in suspended solids for pollutant build-up as well as wash-off. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this specific particle size range needs to be removed. ------------------- Recommendations: Based on the study results the following preliminary recommendations are made: * Due to the appreciable variation in pollutant characteristics for different port land uses, any water quality monitoring stations should preferably be located such that source areas can be easily identified. * The study results having identified significant pollutants for the different land uses should enable the development of a more customised water quality monitoring and testing regime targeting the critical pollutants. * A ‘one size fits all’ approach may not be appropriate for the different port land uses due to the varying pollutant characteristics. As such, pollution mitigation will need to be specifically tailored to suit the specific land use. * Any structural measures implemented for pollution mitigation to be effective should have the capability to remove suspended solids of size <150m. * Based on the results presented and the particularly the fact that the Port land uses cannot be compared to conventional urban land uses in relation to pollutant generation, consideration should be given to the development of a port specific water quality model.