212 resultados para Satellite solar power stations.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lady Elliot Island eco-resort, on the Great Barrier Reef, operates with a strong sustainability ethic, and has broken away from its reliance on diesel generators, an initiative which has ongoing and substantial economic benefit. The first step was an energy audit that led to a 35% reduction in energy usage, to an average of 575 kWh per day. The eco-resort then commissioned a hybrid solar power station, in 2008, with energy storage in battery banks. Solar power is currently (2013) providing about 160 kWh of energy per day, and the eco-resort’s diesel fuel usage has decreased from 550 to 100 litres per day, enabling the power station to pay for itself in 3 years. The eco-resort plans to complete its transition to renewable energy by 2015, by installing additional solar panels, and a 10-15 kW wind turbine. This paper starts by discussing why the eco-resort chose a hybrid solar power station to transition to renewable energy, and the barriers to change. It then describes the power station, upgrades through to 2013, the power control system, the problems that were solved to realise the potential of a facility operating in a harsh and remote environment, and its performance. The paper concludes by outlining other eco-resort sustainability practices, including education and knowledge-sharing initiatives, and monitoring the island’s environmental and ecological condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale solar plants are gaining recognition as potential energy sources for future. In this paper, the feasibility of using electric vehicles (EVs) to control a solar powered micro-grid is investigated in detail. The paper presents a PSCAD/EMTDC based model for the solar powered micro-grid with EVs. EVs are expected to have both the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capability, through which energy can either be injected into or extracted from the solar powered micro-grid to control its energy imbalance. Using the model, the behaviour of the micro-grid is investigated under a given load profile, and the results indicate that a minimum number of EVs are required to meet the energy imbalance and it is time dependent and influenced by various factors such as depth of charge, commuting profiles, reliability etc...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses hardware design principles for long-term solar-powered wireless sensor networks. We argue that the assumptions and principles appropriate for long-term operation from primary cells are quite different from the solar power case with its abundant energy and regular charging cycles. We present data from a long-term deployment that illustrates the use of solar energy and rechargeable batteries to achieve 24x7 operation for over two years, since March 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent months the extremes of Australia’s weather have affected, killed a good number of people and millions of dollars lost. Contrary to a manned aircraft or a helicopter; which have restricted air time, a UAS or a group of UAS could provide 24 hours coverage of the disaster area and be instrumented with infrared cameras to locate distressed people and relay information to emergency services. The solar powered UAV is capable of carrying a 0.25Kg payload consuming 0.5 watt and fly continuously for at low altitude for 24 hrs ,collect the data and create a special distribution . This system, named Green Falcon, is fully autonomous in navigation and power generation, equipped with solar cells covering its wing, it retrieves energy from the sun in order to supply power to the propulsion system and the control electronics, and charge the battery with the surplus of energy. During the night, the only energy available comes from the battery, which discharges slowly until the next morning when a new cycle starts. The prototype airplane was exhibited at the Melbourne Museum form Nov09 to Feb 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the face of increasing concern over global warming and climate change, interest in the utilizzation of solar energy for building operations is rapidly growing. In this entry, the importance of using renewable energy in building operations is first introduced. This is followed by a general overview on the energy from the sun and the methods to utilize solar energy. Possible applications of solar energy in building operations are then discussed, which include the use of solar energy in the forms of daylighting, hot water heating, space heating and cooling, and building-integrated photovoltaics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solar thermal membrane distillation pilot plant was operated for over 70 days in field conditions. The pilot plant incorporated a single spiral wound permeate gap membrane distillation style of module. All energy used to operate the unit was supplied by solar hot water collectors and photovoltaic panels. The process was able to produce a distillate stream of product water with a conductivity less than 10 µS/cm. Feed water concentration varied from 2,400 µS/cm to 106,000 µS/cm. The process is expected to find application in the production of drinking water for remote island and arid regions without the consumption of electrical energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The University of Queensland UltraCommuter project is the demonstration of an ultra-light weight, low drag, energy efficient and low polluting, electric commuter vehicle equipped with a 2.5m2 on-board solar array. A key goal of the project is to make the vehicle predominantly self-sufficient from solar power for normal driving purposes , so that it does not require charging or refuelling from off-board sources. This paper examines the technical feasibility of the solar-powered commuter vehicle concept, as it applies the UltraCommuter project. A parametric description of a solar-powered commuter vehicle is presented. Real solar insolation data is then used to predict the solar driving range for the UltraCommuter and this is compared to typical urban usage patterns for commuter vehicles in Queensland. A comparative analysis of annual greenhouse gas emissions from the vehicle is also presented. The results show that the UltraCommuter’s on-board solar array can provide substantial supplementation of the energy required for normal driving, powering 90% of annual travel needs for an average QLD passenger vehicle. The vehicle also has excellent potential to reduce annual greenhouse gas emissions from the private transport sector, achieving a 98% reduction in CO2 emissions when compared to the average QLD passenger vehicle. Lastly, the vehicle battery pack provides for tolerance to consecutive days of poor weather without resorting to grid charging, giving uninterrupted functionality to the user. These results hold great promise for the technical feasibility of the solar-powered commuter vehicle concept.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the law and policy concerning renewable energy electricity generation in Palestine, Jordan, and Abu Dhabi. The thesis gives greater attention to the promotion of solar power owing to the abundance and viability. It appears that energy security profoundly underpins the utilisation of renewable electricity, and the motivation of climate change mitigation also pays a role in the promotion of renewable energy in these jurisdictions. However, current policies and regulations are not fully able to promote the renewables in the power sector. The thesis submits that reforms of law and policy are necessary to enhance the achievement of environmental and energy goals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes some new wireless sensor hardware developed for pastoral and environmental applications. From our early experiments with Mote hardware we were inspired to develop our devices with improved radio range, solar power capability, mechanical and electrical robustness, and with unique combinations of sensors. Here we describe the design and evolution of a small family of devices: radio/processor board, a soil moisture sensor interface, and a single board multi-sensor unit for animal tracking experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The economiser is a critical component for efficient operation of coal-fired power stations. It consists of a large system of water-filled tubes which extract heat from the exhaust gases. When it fails, usually due to erosion causing a leak, the entire power station must be shut down to effect repairs. Not only are such repairs highly expensive, but the overall repair costs are significantly affected by fluctuations in electricity market prices, due to revenue lost during the outage. As a result, decisions about when to repair an economiser can alter the repair costs by millions of dollars. Therefore, economiser repair decisions are critical and must be optimised. However, making optimal repair decisions is difficult because economiser leaks are a type of interactive failure. If left unfixed, a leak in a tube can cause additional leaks in adjacent tubes which will need more time to repair. In addition, when choosing repair times, one also needs to consider a number of other uncertain inputs such as future electricity market prices and demands. Although many different decision models and methodologies have been developed, an effective decision-making method specifically for economiser repairs has yet to be defined. In this paper, we describe a Decision Tree based method to meet this need. An industrial case study is presented to demonstrate the application of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cooperative Research Centre (CRC) for Rail Innovation is conducting a tranche of industry-led research projects looking into safer rail level crossings. This paper will provide an overview of the Affordable Level Crossings project, a project that is performing research in both engineering and human factors aspects of low-cost level crossing warning devices (LCLCWDs), and is facilitating a comparative trial of these devices over a period of 12 months in several jurisdictions. Low-cost level crossing warning devices (LCLCWDs) are characterised by the use of alternative technologies for high cost components including train detection and connectivity (e.g. radar, acoustic, magnetic induction train detection systems and wireless connectivity replacing traditional track circuits and wiring). These devices often make use of solar power where mains power is not available, and aim to make substantial savings in lifecycle costs. The project involves trialling low-cost level crossing warning devices in shadow-mode, where devices are installed without the road-user interface at a number of existing level crossing sites that are already equipped with conventional active warning systems. It may be possible that the deployment of lower-cost devices can provide a significantly larger safety benefit over the network than a deployment of expensive conventional devices, as the lower cost would allow more passive level crossing sites to be upgraded with the same capital investment. The project will investigate reliability and safety integrity issues of the low-cost devices, as well as evaluate lifecycle costs and investigate human factors issues related to warning reliability. This paper will focus on the requirements and safety issues of LCLCWDs, and will provide an overview of the Rail CRC projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tilting-pad hydrodynamic thrust bearings are used in hydroelectric power stations around the world, reliably supporting turbines weighing hundreds of tonnes, over decades of service. Newer designs incorporate hydrostatic recesses machined into the sector-shaped pads to enhance oil film thickness at low rotational speeds. External pressurisation practically eliminates wear and enhances service life and reliability. It follows that older generating plants, lacking such assistance, stand to benefit from being retrofitted with hydrostatic lubrication systems. The design process is not trivial however. The need to increase the groove size to permit spontaneous lifting of the turbine under hydrostatic pressure, conflicts with the need to preserve performance of the original plane pad design. A haphazardly designed recess can induce a significant rise in bearing temperature concomitant with reduced mechanical efficiency and risk of thermal damage. In this work, a numerical study of a sector-shaped pad is undertaken to demonstrate how recess size and shape can affect the performance of a typical bearing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 20 years there has been a considerable push at all three tiers of Government and private industry in Australia to improve the energy efficiency and sustainability levels of residential housing. A number of these initiatives have been voluntary, such as solar power and solar heating rebates, with other mandatory measures being incorporated into building standards and codes. Although the importance of energy efficiency and sustainable materials have been widely conveyed both at the academic and public level, it does not always reflect in the residential house purchase decision by typical house buyers, including residential property investors. This paper will analyse a range of housing markets in Brisbane to determine the investment performance of those markets over the past 3 years to determine any significant differences between new residential suburbs and older residential suburbs where houses have not been constructed to the current energy efficiency and sustainability guidelines. The range of suburbs to be analysed will focus on middle to lower high value suburbs, with a particular focus on residential housing in Master Planned Communities to determine if socio-economic factors and development size and scope have an impact of the purchase and investment performance of sustainable houses in comparison to older housing stock. The paper confirms that the residential property market shows a higher capital return for residential property built under stricter sustainability guidelines than similar located and type of property built prior to the BCA 2004 and older style project type homes erected prior to 2000.