534 resultados para RADIATION EFFECT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We conducted a clinical trial to compare the molecular and cellular responses of human melanocytes and keratinocytes in vivo to solar-simulated ultraviolet radiation (SSUVR) in 57 Caucasian participants grouped according to MC1R genotype. We found that, on average, the density of epidermal melanocytes 14 days after exposure to 2 minimal erythemal dose (MED) SSUVR was twofold higher than baseline (unirradiated) skin. However, the change in epidermal melanocyte counts among people carrying germline MC1R variants (97% increase) was significantly less than those with wild-type MC1R (164% increase; P = 0.01). We also found that sunscreen applied to the skin before exposure to 2 MED SSUVR completely blocked the effects of DNA damage, p53 induction, and cellular proliferation in both melanocytes and keratinocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radiosensitizing Effect of Electrochemotherapy in a Fractionated Radiation Regimen in Radiosensitive Murine Sarcoma and Radioresistant Adenocarcinoma Tumor Model. Electrochemotherapy can potentiate the radiosensitizing effect of bleomycin, as shown in our previous studies. To bring this treatment closer to use in clinical practice, we evaluated the interaction between electrochemotherapy with bleomycin and single-dose or fractionated radiation in two murine tumor models with different histology and radiosensitivity. Radiosensitive sarcoma SA-1 and radioresistant adenocarcinoma CaNT subcutaneous tumors grown in A/J and CBA mice, respectively, were used. The anti-tumor effect and skin damage around the treated tumors were evaluated after electrochemotherapy with bleomycin alone or combined with single-dose radiation or a fractionated radiation regimen. The anti-tumor effectiveness of electrochemotherapy was more pronounced in SA-1 than CaNT tumors. In both tumor models, the tumor response to radiation was not significantly influenced by bleomycin alone or by electroporation alone. However, electrochemotherapy before the first tumor irradiation potentiated the response to a single-dose or fractionated radiation regimen in both tumors. For the fractionated radiation regimen, normal skin around the treated tumors was damaged fourfold less than for the single-dose regimen. Electrochemotherapy prior to single-dose irradiation induced more damage to the skin around the treated tumors and greater loss of body weight compared to other irradiated groups, whereas electrochemotherapy combined with the fractionated radiation regimen did not. Electrochemotherapy with low doses of bleomycin can also be used safely for radiosensitization of different types of tumors in a fractionated radiation regimen, resulting in a good anti-tumor effect and no major potentiating effect on radiation-induced skin damage. © 2009 by Radiation Research Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280-320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB-induced damage. To investigate these processes, established two and three-dimensional culture models were utilized to study the impact of fibroblast-keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase-3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast-produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation-induced damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectric polymers based on polyvinylidene flouride (PVDF) are of interest as adaptive materials for large aperture space-based telescopes. In this study, two piezoelectric polymers, PVDF and P(VDF-TrFE), were exposed to conditions simulating the thermal, radiative and atomic oxygen conditions of low Earth orbit. The degradation pathways were governed by a combination of chemical and physical degradation processes with the molecular changes primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure, as evident from depoling, loss of orientation and surface erosion. The piezoelectric responsiveness of each polymer was strongly dependent on exposure temperature. Radiation and atomic oxygen exposure caused physical and chemical degradation, which would ultimately cause terminal damage of thin films, but did not adversely affect the piezoelectric properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gel dosimeters are of increasing interest in the field of radiation oncology as the only truly three-dimensional integrating radiation dosimeter. There are a range of ferrous-sulphate and polymer gel dosimeters. To be of use, they must be water-equivalent. On their own, this relates to their radiological properties as determined by their composition. In the context of calibration of gel dosimeters, there is the added complexity of the calibration geometry; the presence of containment vessels may influence the dose absorbed. Five such methods of calibration are modelled here using the Monte Carlo method. It is found that the Fricke gel best matches water for most of the calibration methods, and that the best calibration method involves the use of a large tub into which multiple fields of different dose are directed. The least accurate calibration method involves the use of a long test tube along which a depth dose curve yields multiple calibration points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral betafite were obtained and related to the mineral structure. A comparison is made with the spectra of uranyl oxyhydroxide hydrates. Observed bands are attributed to the (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of betafite are comparable with those of the uranyl oxyhydroxides. The mineral betafite is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past ten years, minimally invasive plate osteosynthesis (MIPO) for the fixation of long bone fractures has become a clinically accepted method with good outcomes, when compared to the conventional open surgical approach (open reduction internal fixation, ORIF). However, while MIPO offers some advantages over ORIF, it also has some significant drawbacks, such as a more demanding surgical technique and increased radiation exposure. No clinical or experimental study to date has shown a difference between the healing outcomes in fractures treated with the two surgical approaches. Therefore, a novel, standardised severe trauma model in sheep has been developed and validated in this project to examine the effect of the two surgical approaches on soft tissue and fracture healing. Twenty four sheep were subjected to severe soft tissue damage and a complex distal femur fracture. The fractures were initially stabilised with an external fixator. After five days of soft tissue recovery, internal fixation with a plate was applied, randomised to either MIPO or ORIF. Within the first fourteen days, the soft tissue damage was monitored locally with a compartment pressure sensor and systemically by blood tests. The fracture progress was assessed fortnightly by x-rays. The sheep were sacrificed in two groups after four and eight weeks, and CT scans and mechanical testing performed. Soft tissue monitoring showed significantly higher postoperative Creatine Kinase and Lactate Dehydrogenase values in the ORIF group compared to MIPO. After four weeks, the torsional stiffness was significantly higher in the MIPO group (p=0.018) compared to the ORIF group. The torsional strength also showed increased values for the MIPO technique (p=0.11). The measured total mineralised callus volumes were slightly higher in the ORIF group. However, a newly developed morphological callus bridging score showed significantly higher values for the MIPO technique (p=0.007), with a high correlation to the mechanical properties (R2=0.79). After eight weeks, the same trends continued, but without statistical significance. In summary, this clinically relevant study, using the newly developed severe trauma model in sheep, clearly demonstrates that the minimally invasive technique minimises additional soft tissue damage and improves fracture healing in the early stage compared to the open surgical approach method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman spectra of the uranyl titanate mineral davidite-(La) (La,Ce)(Y,U,Fe2+)(Ti,Fe3+)20(O,OH)38 were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of davidite-(La) are in harmony with those of the uranyl oxyhydroxides. The mineral davidite-(La) is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.