70 resultados para Other Engineering Science and Materials
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and
Resumo:
This special issue aims to provide up-to-date knowledge and the latest scientific concepts and technological developments in the processing, characterization, testing, mechanics, modeling and applications of a broad range of advanced materials. The many contributors, from Denmark, Germany, UK, Iran, Saudi Arabia, Malaysia, Japan, the People’s Republic of China, Singapore, Taiwan, USA, New Zealand and Australia, present a wide range of topics including: nanomaterials, thin films and coatings, metals and alloys, composite materials, materials processing and characterization, biomaterials and biomechanics, and computational materials science and simulation. The work will therefore be of great interest to a broad spectrum of researchers and technologists.
Resumo:
Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.
Resumo:
The QUT Extreme Science and Engineering program provides free hands-on workshops to schools, presented by scientists and engineers to students from prep to year 12 in their own classrooms. The workshops are tied to the school curriculum and give students access to professional quality instruments, helping to stimulate their interest in science and engineering, with the aim of generating a greater take up of STEM related subjects in the senior high school years. In addition to engaging students in activities, workshop presenters provide role models of both genders, helping to breakdown preconceived ideas of the type of person who becomes a scientist or engineer and demystifying the university experience. The Extreme Science and Engineering vans have been running for 10 years and as such demonstrate a sustainable and reproducible model for schools engagement. With funding provided through QUT’s Widening Participation Equity initiative (HEPPP funded) the vans which averaged 120 school visits each year has increased to 150+ visits in 2010. Additionally 100+ workshops (hands-on and career focused) have been presented to students from low socio-economic status schools, on the three QUT campuses in 2011. While this is designed as a long-term initiative the short term results have been very promising, with 3000 students attending the workshops in the first six months and teacher and students feedback has been overwhelmingly positive.
Resumo:
Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.
Resumo:
Disproportionate representation of males and females in science courses and careers continues to be of concern. This article explores gender differences in Australian high school students’ perceptions of school science and their intentions to study university science courses. Nearly 3800 15-year-old students responded to a range of 5-point Likert items relating to intentions to study science at university, perceptions of career-related instrumental issues such as remuneration and job security, self-rated science ability and enjoyment of school science. Australian boys and girls reported enjoying science to a similar extent, however boys reported enjoying it more in relation to other subjects than did girls, and rated their ability in science compared to others in their class more highly than did girls. There was no significant difference between the mean responses of girls and boys to the item “It is likely I will choose a science-related university course when I leave school” and the strongest predictors of responses to this item were items relating to students’ liking for school science and awareness from school science of new and exciting jobs, followed by their perceived self-ability. These results are discussed in relation to socio-scientific values that interact with identity and career choices, employment prospects in science, and implications for science education.
Resumo:
1. Stream ecosystem health monitoring and reporting need to be developed in the context of an adaptive process that is clearly linked to identified values and objectives, is informed by rigorous science, guides management actions and is responsive to changing perceptions and values of stakeholders. To be effective, monitoring programmes also need to be underpinned by an understanding of the probable causal factors that influence the condition or health of important environmental assets and values. This is often difficult in stream and river ecosystems where multiple stressors, acting at different spatial and temporal scales, interact to affect water quality, biodiversity and ecosystem processes. 2. In this article, we describe the development of a freshwater monitoring programme in South East Queensland, Australia, and how this has been used to report on ecosystem health at a regional scale and to guide investments in catchment protection and rehabilitation. We also discuss some of the emerging science needs to identify the appropriate scale and spatial arrangement of rehabilitation to maximise river ecosystem health outcomes and, at the same time, derive other benefits downstream. 3. An objective process was used to identify potential indicators of stream ecosystem health and then test these across a known catchment land-use disturbance gradient. From the 75 indicators initially tested, 22 from five indicator groups (water quality, ecosystem metabolism, nutrient cycling, invertebrates and fish) responded strongly to the disturbance gradient, and 16 were subsequently recommended for inclusion in the monitoring programme. The freshwater monitoring programme was implemented in 2002, funded by local and State government authorities, and currently involves the assessment of over 120 sites, twice per year. This information, together with data from a similar programme on the region's estuarine and coastal marine waters, forms the basis of an annual report card that is presented in a public ceremony to local politicians and the broader community. 4. Several key lessons from the SEQ Healthy Waterways Programme are likely to be transferable to other regional programmes aimed at improving aquatic ecosystem health, including the importance of a shared common vision, the involvement of committed individuals, a cooperative approach, the need for defensible science and effective communication. 5. Thematic implications: this study highlights the use of conceptual models and objective testing of potential indicators against a known disturbance gradient to develop a freshwater ecosystem health monitoring programme that can diagnose the probable causes of degradation from multiple stressors and identify the appropriate spatial scale for rehabilitation or protection. This approach can lead to more targeted management investments in catchment protection and rehabilitation, greater public confidence that limited funds are being well spent and better outcomes for stream and river ecosystem health.
Resumo:
Multiscale, multiphase numerical modeling is used to explain the mechanisms of effective control of chirality distributions of single-walled carbon nanotubes in direct plasma growth and suggest effective approaches to further improvement. The model includes an unprecedented combination of the plasma sheath, ion/radical transport, species creation/loss, plasma–surface interaction, heat transfer, surface/bulk diffusion, graphene layer nucleation, and bending/lift-off modules. It is shown that the constructive interplay between the plasma and the Gibbs–Thomson effect can lead to the effective nucleation and lift-off of small graphene layers on small metal catalyst nanoparticles. As a result, much thinner nanotubes with narrower chirality distributions can nucleate at much lower process temperatures and pressures compared to thermal CVD. This approach is validated by a host of experimental results, substantially reduces the amounts of energy and atomic matter required for the nanotube growth, and can be extended to other nanoscale structures and materials systems, thereby nearing the ultimate goal of energy- and matter-efficient nanotechnology.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.
Resumo:
In this chapter we review studies of the engagement of students in design projects that emphasise integration of technology practice and the enabling sciences, which include physics and mathematics. We give special attention to affective and conceptual outcomes from innovative interventions of design projects. This is important work because of growing international concern that demand for professionals with technological expertise is increasing rapidly, while the supply of students willing to undertake the rigors of study in the enabling sciences is proportionally reducing (e.g., Barringtion, 2006; Hannover & Kessels, 2004; Yurtseven, 2002). The net effect is that the shortage in qualified workers is having a detrimental effect upon economic and social potential in Westernised countries (e.g., Department of Education, Science and Training [DEST], 2003; National Numeracy Review Panel and National Numeracy Review Secretarial, 2007; Yurtseven, 2002). Interestingly, this trend is reversed in developing economies including China and India (Anderson & Gilbride, 2003).
Resumo:
This study explores coteaching/cogenerative dialoguing with parents to investigate how it may be employed to engage parents more meaningfully in schools. The cogens provided a space where participants became aware of resources available for coteaching, made decisions about planning and enacting coteaching, as well as interstitial culture that facilitated positive parent-teacher relationships.
Resumo:
This document is an adaptation of a report submitted to the ALTC in 2009, with additional data collected through subsequent interviews with science supervisors. The organisation of the contents also reflects a development of thought since the original project. The framework presented in this document is intended to provide science and technology supervisors with a range of options with respect to supervisory pedagogy. It has been developed to highlight different aspects of thinking about supervision as a teaching and learning practice; as well as approaches, strategies and roles associated with supervision. It will enable science and technology supervisors to become aware of the diverse options available to them and provide systematic ways of thinking about supervisory practices. Use of this framework will encourage supervisors to make choices based on broader, rather than more limited, repertoires. It will also encourage thinking about supervision as a teaching and learning practice.