109 resultados para Opinion question answering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The World Wide Web has become a medium for people to share information. People use Web-based collaborative tools such as question answering (QA) portals, blogs/forums, email and instant messaging to acquire information and to form online-based communities. In an online QA portal, a user asks a question and other users can provide answers based on their knowledge, with the question usually being answered by many users. It can become overwhelming and/or time/resource consuming for a user to read all of the answers provided for a given question. Thus, there exists a need for a mechanism to rank the provided answers so users can focus on only reading good quality answers. The majority of online QA systems use user feedback to rank users’ answers and the user who asked the question can decide on the best answer. Other users who didn’t participate in answering the question can also vote to determine the best answer. However, ranking the best answer via this collaborative method is time consuming and requires an ongoing continuous involvement of users to provide the needed feedback. The objective of this research is to discover a way to recommend the best answer as part of a ranked list of answers for a posted question automatically, without the need for user feedback. The proposed approach combines both a non-content-based reputation method and a content-based method to solve the problem of recommending the best answer to the user who posted the question. The non-content method assigns a score to each user which reflects the users’ reputation level in using the QA portal system. Each user is assigned two types of non-content-based reputations cores: a local reputation score and a global reputation score. The local reputation score plays an important role in deciding the reputation level of a user for the category in which the question is asked. The global reputation score indicates the prestige of a user across all of the categories in the QA system. Due to the possibility of user cheating, such as awarding the best answer to a friend regardless of the answer quality, a content-based method for determining the quality of a given answer is proposed, alongside the non-content-based reputation method. Answers for a question from different users are compared with an ideal (or expert) answer using traditional Information Retrieval and Natural Language Processing techniques. Each answer provided for a question is assigned a content score according to how well it matched the ideal answer. To evaluate the performance of the proposed methods, each recommended best answer is compared with the best answer determined by one of the most popular link analysis methods, Hyperlink-Induced Topic Search (HITS). The proposed methods are able to yield high accuracy, as shown by correlation scores: Kendall correlation and Spearman correlation. The reputation method outperforms the HITS method in terms of recommending the best answer. The inclusion of the reputation score with the content score improves the overall performance, which is measured through the use of Top-n match scores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe a voting mechanism for accurate named entity (NE) translation in English–Chinese question answering (QA). This mechanism involves translations from three different sources: machine translation,online encyclopaedia, and web documents. The translation with the highest number of votes is selected. We evaluated this approach using test collection, topics and assessment results from the NTCIR-8 evaluation forum. This mechanism achieved 95% accuracy in NEs translation and 0.3756 MAP in English–Chinese cross-lingual information retrieval of QA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collaborative question answering (cQA) portals such as Yahoo! Answers allow users as askers or answer authors to communicate, and exchange information through the asking and answering of questions in the network. In their current set-up, answers to a question are arranged in chronological order. For effective information retrieval, it will be advantageous to have the users’ answers ranked according to their quality. This paper proposes a novel approach of evaluating and ranking the users’answers and recommending the top-n quality answers to information seekers. The proposed approach is based on a user-reputation method which assigns a score to an answer reflecting its answer author’s reputation level in the network. The proposed approach is evaluated on a dataset collected from a live cQA, namely, Yahoo! Answers. To compare the results obtained by the non-content-based user-reputation method, experiments were also conducted with several content-based methods that assign a score to an answer reflecting its content quality. Various combinations of non-content and content-based scores were also used in comparing results. Empirical analysis shows that the proposed method is able to rank the users’ answers and recommend the top-n answers with good accuracy. Results of the proposed method outperform the content-based methods, various combinations, and the results obtained by the popular link analysis method, HITS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At NTCIR-9, we participated in the cross-lingual link discovery (Crosslink) task. In this paper we describe our approaches to discovering Chinese, Japanese, and Korean (CJK) cross-lingual links for English documents in Wikipedia. Our experimental results show that a link mining approach that mines the existing link structure for anchor probabilities and relies on the “translation” using cross-lingual document name triangulation performs very well. The evaluation shows encouraging results for our system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an overview of NTCIR-9 Cross-lingual Link Discovery (Crosslink) task. The overview includes: the motivation of cross-lingual link discovery; the Crosslink task definition; the run submission specification; the assessment and evaluation framework; the evaluation metrics; and the evaluation results of submitted runs. Cross-lingual link discovery (CLLD) is a way of automatically finding potential links between documents in different languages. The goal of this task is to create a reusable resource for evaluating automated CLLD approaches. The results of this research can be used in building and refining systems for automated link discovery. The task is focused on linking between English source documents and Chinese, Korean, and Japanese target documents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2011 evaluation campaign, which consisted of a five active tracks: Books and Social Search, Data Centric, Question Answering, Relevance Feedback, and Snippet Retrieval. INEX 2011 saw a range of new tasks and tracks, such as Social Book Search, Faceted Search, Snippet Retrieval, and Tweet Contextualization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays people heavily rely on the Internet for information and knowledge. Wikipedia is an online multilingual encyclopaedia that contains a very large number of detailed articles covering most written languages. It is often considered to be a treasury of human knowledge. It includes extensive hypertext links between documents of the same language for easy navigation. However, the pages in different languages are rarely cross-linked except for direct equivalent pages on the same subject in different languages. This could pose serious difficulties to users seeking information or knowledge from different lingual sources, or where there is no equivalent page in one language or another. In this thesis, a new information retrieval task—cross-lingual link discovery (CLLD) is proposed to tackle the problem of the lack of cross-lingual anchored links in a knowledge base such as Wikipedia. In contrast to traditional information retrieval tasks, cross language link discovery algorithms actively recommend a set of meaningful anchors in a source document and establish links to documents in an alternative language. In other words, cross-lingual link discovery is a way of automatically finding hypertext links between documents in different languages, which is particularly helpful for knowledge discovery in different language domains. This study is specifically focused on Chinese / English link discovery (C/ELD). Chinese / English link discovery is a special case of cross-lingual link discovery task. It involves tasks including natural language processing (NLP), cross-lingual information retrieval (CLIR) and cross-lingual link discovery. To justify the effectiveness of CLLD, a standard evaluation framework is also proposed. The evaluation framework includes topics, document collections, a gold standard dataset, evaluation metrics, and toolkits for run pooling, link assessment and system evaluation. With the evaluation framework, performance of CLLD approaches and systems can be quantified. This thesis contributes to the research on natural language processing and cross-lingual information retrieval in CLLD: 1) a new simple, but effective Chinese segmentation method, n-gram mutual information, is presented for determining the boundaries of Chinese text; 2) a voting mechanism of name entity translation is demonstrated for achieving a high precision of English / Chinese machine translation; 3) a link mining approach that mines the existing link structure for anchor probabilities achieves encouraging results in suggesting cross-lingual Chinese / English links in Wikipedia. This approach was examined in the experiments for better, automatic generation of cross-lingual links that were carried out as part of the study. The overall major contribution of this thesis is the provision of a standard evaluation framework for cross-lingual link discovery research. It is important in CLLD evaluation to have this framework which helps in benchmarking the performance of various CLLD systems and in identifying good CLLD realisation approaches. The evaluation methods and the evaluation framework described in this thesis have been utilised to quantify the system performance in the NTCIR-9 Crosslink task which is the first information retrieval track of this kind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article asks the question whether Australia’s retirement savings regime, specifically the superannuation component and the attached taxation concessions, is a regime which is equitable to all taxpayers. In a dissenting opinion, it is argued that the current regime, along with the changes proposed by the Federal Government in its response to the Henry Review, does not result in a retirement savings regime which benefits all taxpayers equally. As such, it is suggested that the only way to ensure an equitable regime is to incorporate a gender perspective into public finance analysis to determine how the retirement savings policies affect women and men differently. In doing so, a specific tax policy which provides for additional, fiscally significant concessions for taxpayers who do not fit the criteria of a ‘normal’ taxpayer, that is a taxpayer working as an employee in a full time position for an uninterrupted 35 years, should be incorporated into Australia’s current fiscal policy.