54 resultados para Grünes Gewölbe (Museum : Dresden, Germany)
Resumo:
Smartphones are getting increasingly popular and several malwares appeared targeting these devices. General countermeasures to smartphone malwares are currently limited to signature-based antivirus scanners which efficiently detect known malwares, but they have serious shortcomings with new and unknown malwares creating a window of opportunity for attackers. As smartphones become host for sensitive data and applications, extended malware detection mechanisms are necessary complying with the corresponding resource constraints. The contribution of this paper is twofold. First, we perform static analysis on the executables to extract their function calls in Android environment using the command readelf. Function call lists are compared with malware executables for classifying them with PART, Prism and Nearest Neighbor Algorithms. Second, we present a collaborative malware detection approach to extend these results. Corresponding simulation results are presented.
Resumo:
Thin films consisting of graphene-like nano-sheets were deposited onto LiTaO3 surface acoustic wave transducers. A thickness of less than 10 nm and the existence of C-C bond were observed during the characterization of graphene-like nano-sheets. Frequency shift of 18.7 kHz and 14.9 kHz towards 8.5 ppm NO2 at two different operating temperature, 40°C and 25°C, respectively, was observed.
Resumo:
This paper analyzes the limitations upon the amount of in- domain (NIST SREs) data required for training a probabilistic linear discriminant analysis (PLDA) speaker verification system based on out-domain (Switchboard) total variability subspaces. By limiting the number of speakers, the number of sessions per speaker and the length of active speech per session available in the target domain for PLDA training, we investigated the relative effect of these three parameters on PLDA speaker verification performance in the NIST 2008 and NIST 2010 speaker recognition evaluation datasets. Experimental results indicate that while these parameters depend highly on each other, to beat out-domain PLDA training, more than 10 seconds of active speech should be available for at least 4 sessions/speaker for a minimum of 800 speakers. If further data is available, considerable improvement can be made over solely out-domain PLDA training.
Resumo:
This paper proposes the addition of a weighted median Fisher discriminator (WMFD) projection prior to length-normalised Gaussian probabilistic linear discriminant analysis (GPLDA) modelling in order to compensate the additional session variation. In limited microphone data conditions, a linear-weighted approach is introduced to increase the influence of microphone speech dataset. The linear-weighted WMFD-projected GPLDA system shows improvements in EER and DCF values over the pooled LDA- and WMFD-projected GPLDA systems in inter-view-interview condition as WMFD projection extracts more speaker discriminant information with limited number of sessions/ speaker data, and linear-weighted GPLDA approach estimates reliable model parameters with limited microphone data.
Resumo:
In this paper we introduce a novel domain-invariant covariance normalization (DICN) technique to relocate both in-domain and out-domain i-vectors into a third dataset-invariant space, providing an improvement for out-domain PLDA speaker verification with a very small number of unlabelled in-domain adaptation i-vectors. By capturing the dataset variance from a global mean using both development out-domain i-vectors and limited unlabelled in-domain i-vectors, we could obtain domain- invariant representations of PLDA training data. The DICN- compensated out-domain PLDA system is shown to perform as well as in-domain PLDA training with as few as 500 unlabelled in-domain i-vectors for NIST-2010 SRE and 2000 unlabelled in-domain i-vectors for NIST-2008 SRE, and considerable relative improvement over both out-domain and in-domain PLDA development if more are available.
Resumo:
We propose a novel technique for conducting robust voice activity detection (VAD) in high-noise recordings. We use Gaussian mixture modeling (GMM) to train two generic models; speech and non-speech. We then score smaller segments of a given (unseen) recording against each of these GMMs to obtain two respective likelihood scores for each segment. These scores are used to compute a dissimilarity measure between pairs of segments and to carry out complete-linkage clustering of the segments into speech and non-speech clusters. We compare the accuracy of our method against state-of-the-art and standardised VAD techniques to demonstrate an absolute improvement of 15% in half-total error rate (HTER) over the best performing baseline system and across the QUT-NOISE-TIMIT database. We then apply our approach to the Audio-Visual Database of American English (AVDBAE) to demonstrate the performance of our algorithm in using visual, audio-visual or a proposed fusion of these features.
Resumo:
The QUT-NOISE-SRE protocol is designed to mix the large QUT-NOISE database, consisting of over 10 hours of back- ground noise, collected across 10 unique locations covering 5 common noise scenarios, with commonly used speaker recognition datasets such as Switchboard, Mixer and the speaker recognition evaluation (SRE) datasets provided by NIST. By allowing common, clean, speech corpora to be mixed with a wide variety of noise conditions, environmental reverberant responses, and signal-to-noise ratios, this protocol provides a solid basis for the development, evaluation and benchmarking of robust speaker recognition algorithms, and is freely available to download alongside the QUT-NOISE database. In this work, we use the QUT-NOISE-SRE protocol to evaluate a state-of-the-art PLDA i-vector speaker recognition system, demonstrating the importance of designing voice-activity-detection front-ends specifically for speaker recognition, rather than aiming for perfect coherence with the true speech/non-speech boundaries.
Resumo:
Spoken term detection (STD) is the task of looking up a spoken term in a large volume of speech segments. In order to provide fast search, speech segments are first indexed into an intermediate representation using speech recognition engines which provide multiple hypotheses for each speech segment. Approximate matching techniques are usually applied at the search stage to compensate the poor performance of automatic speech recognition engines during indexing. Recently, using visual information in addition to audio information has been shown to improve phone recognition performance, particularly in noisy environments. In this paper, we will make use of visual information in the form of lip movements of the speaker in indexing stage and will investigate its effect on STD performance. Particularly, we will investigate if gains in phone recognition accuracy will carry through the approximate matching stage to provide similar gains in the final audio-visual STD system over a traditional audio only approach. We will also investigate the effect of using visual information on STD performance in different noise environments.
Resumo:
Speech recognition can be improved by using visual information in the form of lip movements of the speaker in addition to audio information. To date, state-of-the-art techniques for audio-visual speech recognition continue to use audio and visual data of the same database for training their models. In this paper, we present a new approach to make use of one modality of an external dataset in addition to a given audio-visual dataset. By so doing, it is possible to create more powerful models from other extensive audio-only databases and adapt them on our comparatively smaller multi-stream databases. Results show that the presented approach outperforms the widely adopted synchronous hidden Markov models (HMM) trained jointly on audio and visual data of a given audio-visual database for phone recognition by 29% relative. It also outperforms the external audio models trained on extensive external audio datasets and also internal audio models by 5.5% and 46% relative respectively. We also show that the proposed approach is beneficial in noisy environments where the audio source is affected by the environmental noise.
Resumo:
Automatic speech recognition from multiple distant micro- phones poses significant challenges because of noise and reverberations. The quality of speech acquisition may vary between microphones because of movements of speakers and channel distortions. This paper proposes a channel selection approach for selecting reliable channels based on selection criterion operating in the short-term modulation spectrum domain. The proposed approach quantifies the relative strength of speech from each microphone and speech obtained from beamforming modulations. The new technique is compared experimentally in the real reverb conditions in terms of perceptual evaluation of speech quality (PESQ) measures and word error rate (WER). Overall improvement in recognition rate is observed using delay-sum and superdirective beamformers compared to the case when the channel is selected randomly using circular microphone arrays.
Resumo:
The picturesque aesthetic in the work of Sir John Soane, architect and collector, resonates in the major work of his very personal practice – the development of his house museum, now the Soane Museum in Lincoln’s Inn Fields in London. Soane was actively involved with the debates, practices and proponents of picturesque and classical practices in architecture and landscape and his lectures reveal these influences in the making of The Soane, which was built to contain and present diverse collections of classical and contemporary art and architecture alongside scavenged curiosities. The Soane Museum has been described as a picturesque landscape, where a pictorial style, together with a carefully defined itinerary, has resulted in the ‘apotheosis of the Picturesque interior’. Soane also experimented with making mock ruinscapes within gardens, which led him to construct faux architectures alluding to archaeological practices based upon the ruin and the fragment. These ideas framed the making of interior landscapes expressed through spatial juxtapositions of room and corridor furnished with the collected object that characterise The Soane Museum. This paper is a personal journey through the Museum which describes and then reviews aspects of Soane’s work in the context of contemporary theories on ‘new’ museology. It describes the underpinning picturesque practices that Soane employed to exceed the boundaries between interior and exterior landscapes and the collection. It then applies particular picturesque principles drawn from visiting The Soane to a speculative project for a house/landscape museum for the Oratunga historic property in outback South Australia, where the often, normalising effects of conservation practices are reviewed using minimal architectural intervention through a celebration of ruinous states.
Resumo:
This is an important book that ought to launch a debate about how we research our understanding of the world, it is an innovative intervention in a vital public issue, and it is an elegant and scholarly hard look at what is actually happening. Jean Seaton, Prof of Media History, U of Westminster, UK & Official Historian of the BBC -- Summary: This book investigates the question of how comparative studies of international TV news (here: on violence presentation) can best be conceptualized in a way that allows for crossnational, comparative conclusions on an empirically validated basis. This book shows that such a conceptualization is necessary in order to overcome existing restrictions in the comparability of international analysis on violence presentation. Investigated examples include the most watched news bulletins in Great Britain (10o'clock news on the BBC), Germany (Tagesschau on ARD) and Russia (Vremja on Channel 1). This book highlights a substantial cross-national violence news flow as well as a cross-national visual violence flow (key visuals) as distinct transnational components. In addition, event-related textual analysis reveals how the historical rootedness of nations and its symbols of power are still manifested in televisual mediations of violence. In conclusion, this study lobbies for a conscientious use of comparative data/analysis both in journalism research and practice in order to understand what it may convey in the different arenas of today’s newsmaking.