9 resultados para myofibrillar ATPase activity of myosin

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major advances in the development and use of antimicrobial textiles to control bacterial proliferation on wound beds continue. However, wound dressings are, in general, not included in standardized regimens for measuring and monitoring their antimicrobial effectiveness. This work adapts these methods to assess the antibacterial activity of textiles designed for wound healing purposes. Environmental conditions representative of those present at the wound site (i.e., moisture levels, infection, and available nutrients) were evaluated. This work shows that moisture levels were the environmental factor that had the greatest influence on the antimicrobial agent activities tested. These results suggest that it is possible to use the more representative environmental conditions present on the wound bed for in vitro screening of textile antimicrobial activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Caffeic acid is described as antibacterial, but this bioactive molecule has some issues regarding solubility and stability to environmental stress. Thus, encapsulation devices are required. Objective: The aim of this work was to study the effect of the caffeic acid encapsulation by cyclodextrins on its antibacterial activity. Materials and methods: The interactions between the caffeic acid and three cyclodextrins (-cyclodextrin (CD), 2-hydroxypropyl--cyclodextrin (HPCD) and methyl--cyclodextrin were study. Results and discussion: The formation of an aqueous soluble inclusion complex was confirmed for CD and HPCD with a 1:1 stoichiometry. The CD/caffeic acid complex showed higher stability than HPCD/caffeic acid. Caffeic acid antibacterial activity was similar at pH 3 and pH 5 against the three bacteria (K. pneumoniae, S. epidermidis and S. aureus). Conclusions: The antibacterial activity of the inclusion complexes was described here for the first time and it was shown that the caffeic acid activity was remarkably enhanced by the cyclodextrins encapsulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Excerpt] Cancer is the second most common cause of death in developed countries appearing just after cardiovascular diseases. The treatment of cancer remains a major medical challenge and the development of new anticancer drugs is an emerging topic for the scientific community. During the past three decades several chemical classes of anticancer drugs have been identified. In particular, 2,6-diamino purines proved to be important candidates as new anti-cancer agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The severity and frequency of opportunistic fungal infections still growing, concomitantly to the increasing rates of antimicrobial drugs resistance. Natural matrices have been used over years due to its multitude of health benefits, including antifungal potential. Thus, the present work aims to evaluate the anti-Candida potential of the phenolic extract and individual phenolic compounds of Glycyrrhiza glabra L. (licorice), by disc diffusion assay, followed by determination of the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for both planktonic cells and biofilms. Licorice extract evidenced inhibitory potential against the nineteen tested Candida strains, but no pronounced effect was observed by testing the most abundant individual phenolic compounds. Candida tropicalis strains were the most sensible, followed by Candida glabrata, Candida parapsilosis and, then, Candida albicans. Lower MIC and MFC values were achieved to C. glabrata and C. tropicalis, which confirms its susceptibility to licorice extract; however, for C. tropicalis strains a higher variability was observed. Anti-biofilm potential was also achieved, being most evident in some C. glabrata and C. tropicalis strains. In general, a twice concentration of the MIC was necessary for planktonic cells to obtain a similar potential to that one observed for biofilms. Thus, an upcoming approach for new antifungal agents, more effective and safer than the current ones, is stablished; notwithstanding, further studies are necessary in order to understand its mechanism of action, as also to assess kinetic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Numerous diseases have been related with free radicals overproduction and oxidative stress. Botanical preparations possess a multitude of bioactive properties, including antioxidant potential, which has been mainly related with the presence of phenolic compounds. However, the mechanisms of action of these phytochemicals, in vivo effects, bioavailability and bio-efficacy still need research. Scope and Approach: The present report aims to provide a critical review on the aspects related with the in vivo antioxidant activity of phenolic extracts and compounds from plant origin. Key findings: Biological functions beyond the human metabolism were discussed, comparing in vivo vs. in vitro studies, as also focusing the conditioning factors for phenolic compounds bioavailability and bio-efficacy. Furthermore, an upcoming perspective about the use of phytochemicals as life expectancy promoters and anti-aging factors in human individuals was provided. Conclusions: Overall, and despite all of those advances, the study of the biological potential of numerous natural matrices still remains a hot topic among the scientific community. In fact, the available knowledge about the responsible phytochemicals for the biological potential, their mechanisms of action, the establishment of therapeutic and prophylactic doses, and even the occurrence of biochemical inter-relations, is considerable scarce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the ethanolic extracts of fourteen edible mushrooms were investigated for their anti-inflammatory potential in LPS (lipopolysaccharide) activated RAW 264.7 macrophages. Furthermore the extracts were chemically characterized in terms of phenolic acids and related compounds. The identified molecules (p-hydroxybenzoic, p-coumaric and cinnamic acids) and their glucuronated and methylated derivatives obtained by chemical synthesis were also evaluated for the same bioactivity, in order to establish structure-activity relationships and to comprehend the effects of in vivo metabolism reactions in the activity of the compounds. The extracts of Pleurotus ostreatus, Macrolepiota procera, Boletus impolitus and Agaricus bisporus revealed the strongest anti-inflammatory potential (EC50 values 96 ± 1 to 190 ± 6 µg/mL, and also the highest concentration of cinnamic acid (656 to 156 µg/g), which was also the individual compound with the highest anti-inflammatory activity. The derivatives of p-coumaric acid revealed the strongest properties, specially the derivative methylated in the carboxylic group (CoA-M1) that exhibited similar activity to the one showed by dexamethaxone used as anti-inflammatory standard; by contrast, the derivatives of p-hydroxybenzoic revealed the lowest inhibition of NO production. All in all, whereas the conjugation reactions change the chemical structure of phenolic acids and may increase or decrease their activity, the glucuronated and methylated derivatives of the studied compounds are still displaying anti-inflammatory activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Ag-O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology were pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia