67 resultados para multibody systems

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This chapter presents a general view of multibody system concept and definition by describing the main features associated with spatial systems. The mechanical components, which can be modeled as rigid or flexible, are constrained by kinematic pair of different types. Additionally, the bodies can be actuated upon by force elements and external forces due to interaction with environment. This chapter also presents some examples of application of multibody systems that can include automotive vehicles, mechanisms, robots and biomechanical systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this chapter, the fundamental ingredients related to formulation of the equations of motion for multibody systems are described. In particular, aspects such as degrees of freedom, types of coordinates, basic kinematics joints and types of analysis in multibody systems are briefly characterized. Illustrative examples of application are also presented to better clarify the fundamental issues for spatial rigid multibody systems, which are of crucial importance in the formulation development of mathematical models of mechanical systems, as well as its computational implementation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Series: Solid mechanics and its applications, vol. 226"

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Series title: Computational methods in applied sciences, ISSN1871-3033, vol. 42"

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter described the global and local coordinate systems utilized in the formulation of spatial multibody systems. Global coordinate system is considered in the present work to denote the inertia frame. Additionally, body-fixed coordinate systems, also called local coordinate systems, are utilized to describe local properties of points that belong to a particular body. Furthermore, the process of transforming local coordinates into global coordinates is characterized by considering a transformation matrix. In the present work, Cartesian coordinates are utilized to locate the center of mass of each rigid body, as well as the location of any point that belongs to a body.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter deals with the different approaches for describing the rotational coordinates in spatial multibody systems. In this process, Euler angles and Bryant angles are briefly characterized. Particular emphasis is given to Euler parameters, which are utilized to describe the rotational coordinates in the present work. In addition, for all the types of coordinates considered in this chapter, a characterization of the transformation matrix is fully described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this chapter, a complete characterization of the angular velocity and angular acceleration for rigid bodies in spatial multibody systems are presented. For both cases, local and global formulations are described taking into account the advantages of using Euler parameters. In this process, the transformation between global and local components of the angular velocity and time derivative of the Euler parameters are analyzed and discussed in this chapter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter describes the how the vector of coordinates are defined in the formulation of spatial multibody systems. For this purpose, the translational motion is described in terms of Cartesian coordinates, while rotational motion is specified using the technique of Euler parameters. This approach avoids the computational difficulties associated with the singularities in the case of using Euler angles or Bryant angles. Moreover, the formulation of the velocities vector and accelerations vector is presented and analyzed here. These two sets of vectors are defined in terms of translational and rotational coordinates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter presents a general methodology for the formulation of the kinematic constraint equations at position, velocity and acceleration levels. Also a brief characterization of the different type of constraints is offered, namely the holonomic and nonholonomic constraints. The kinematic constraints described here are formulated using generalized coordinates. The chapter ends with a general approach to deal with the kinematic analysis of multibody systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter deals with the characterization of the basic constraints between two vectors. This issue plays a crucial role in the formulation of constraint equations for mechanical joints. In particular, relations between two parallel and two perpendicular vectors are derived. Moreover, formulation for a vector that connects two generic points is presented. The material described here is developed under the framework of multibody systems formulation for spatial systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"