46 resultados para heavy vehicle simulation
em Universidade do Minho
Resumo:
This paper proposes a smart battery charging strategy for Electric Vehicles (EVs) targeting the future smart homes. The proposed strategy consists in regulate the EV battery charging current in function of the total home current, aiming to prevent overcurrent trips in the main switch breaker. Computational and experimental results were obtained under real-time conditions to validate the proposed strategy. For such purpose was adapted a bidirectional EV battery charger prototype to operate in accordance with the aforementioned strategy. The proposed strategy was validated through experimental results obtained both in steady and transient states. The results show the correct operation of the EV battery charger even under heavy load variations.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
The usage of rebars in construction is the most common method for reinforcing plain concrete and thus bridging the tensile stresses along the concrete crack surfaces. Usually design codes for modelling the bond behaviour of rebars and concrete suggest a local bond stress – slip relationship that comprises distinct reinforcement mechanisms, such as adhesion, friction and mechanical anchorage. In this work, numerical simulations of pullout tests were performed using the finite element method framework. The interaction between rebar and concrete was modelled using cohesive elements. Distinct local bond laws were used and compared with ones proposed by the Model Code 2010. Finally an attempt was made to model the geometry of the rebar ribs in conjunction with a material damaged plasticity model for concrete.
Resumo:
Electric Vehicles (EVs) have limited energy storage capacity and the maximum autonomy range is strongly dependent of the driver's behaviour. Due to the fact of that batteries cannot be recharged quickly during a journey, it is essential that a precise range prediction is available to the driver of the EV. With this information, it is possible to check if the desirable destination is achievable without a stop to charge the batteries, or even, if to reach the destination it is necessary to perform an optimized driving (e.g., cutting the air-conditioning, among others EV parameters). The outcome of this research work is the development of an Electric Vehicle Assistant (EVA). This is an application for mobile devices that will help users to take efficient decisions about route planning, charging management and energy efficiency. Therefore, it will contribute to foster EVs adoption as a new paradigm in the transportation sector.
Resumo:
This paper proposes an on-board Electric Vehicle (EV) battery charger with enhanced Vehicle-to-Home (V2H) operation mode. For such purpose was adapted an on-board bidirectional battery charger prototype to allow the Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G) and V2H operation modes. Along the paper are presented the hardware topology and the control algorithms of this battery charger. The idea underlying to this paper is the operation of the on-board bidirectional battery charger as an energy backup system when occurs a power outages. For detecting the power outage were compared two strategies, one based on the half-cycle rms calculation of the power grid voltage, and another in the determination of the rms value based in a Kalman filter. The experimental results were obtained considering the on-board EV battery charger under the G2V, V2G, and V2H operation modes. The results show that the power outage detection is faster using a Kalman filter, up to 90% than the other strategy. This also enables a faster transition between operation modes when a power outage occurs.
Resumo:
This paper presents the outcomes of a research work consisting in the development of an Electric Vehicle Assistant (EVA), which creates and stores a driver profile where are contained the driving behaviours related with the EV energy consumption, the EV battery charging information, and the performed routes. This is an application for mobile devices that is able to passively track the driver behaviour and to access several information related with the EV in real time. It is also proposed a range prediction approach based on probability to take into account unpredictable effects of personal driving style, traffic or weather.
Resumo:
This paper presents a mobile information system denominated as Vehicle-to-Anything Application (V2Anything App), and explains its conceptual aspects. This application is aimed at giving relevant information to Full Electric Vehicle (FEV) drivers, by supporting the integration of several sources of data in a mobile application, thus contributing to the deployment of the electric mobility process. The V2Anything App provides recommendations to the drivers about the FEV range autonomy, location of battery charging stations, information of the electricity market, and also a route planner taking into account public transportations and car or bike sharing systems. The main contributions of this application are related with the creation of an Information and Communication Technology (ICT) platform, recommender systems, data integration systems, driver profile, and personalized range prediction. Thus, it is possible to deliver relevant information to the FEV drivers related with the electric mobility process, electricity market, public transportation, and the FEV performance.
Resumo:
This paper presents the conversion process of a traditional Internal Combustion Engine vehicle into an Electric Vehicle. The main constitutive elements of the Electric Vehicle are presented. The developed powertrain uses a three-phase inverter with Field Oriented Control and space vector modulation. The developed on-board batteries charging system can operate in Grid-to-Vehicle and Vehicle-to-Grid modes. The implemented prototypes were tested, and experimental results are presented. The assembly of these prototypes in the vehicle was made in accordance with the Portuguese legislation about vehicles conversion, and the main adopted solutions are presented.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents a novel architecture of a bidirectional bridgeless interleaved converter for battery chargers of electric vehicles (EVs). The proposed converter is composed by two power stages: an ac-dc converter that is used to interface the power grid and the dc-link, and a dc-dc converter that is used to interface the dc-link and the batteries. The ac-dc converter is an interleaved bridgeless bidirectional boost-type converter and the dc-dc converter is a bidirectional buck-boost-type converter. The proposed converter works with sinusoidal grid current and with high power factor for all operating power levels, and in both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. In the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the principle of operation, the power control theory, and the current control strategy. Several simulation results for both G2V and V2G operation modes are presented.
Resumo:
This paper presents a novel concept of unidirectional bridgeless combined boost-buck converter for electric vehicles (EVs) battery chargers. The proposed converter is composed by two power stages: an ac-dc front-end converter used to interface the power grid and the dc-link, and a dc-dc back-end converter used to interface the dc-link and the batteries. The ac-dc converter is a bridgeless boost-type converter and the dc-dc converter is an interleaved buck-type converter. The proposed converter operates with sinusoidal grid current and unitary power factor for all operating power levels. Along the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the different stages describing the principle of operation, the power control theory, and the current control strategy, for both converters. Along the paper are presented several simulation results for a maximum power of 3.5 kW.
Resumo:
The moisture content in concrete structures has an important influence in their behavior and performance. Several vali-dated numerical approaches adopt the governing equation for relative humidity fields proposed in Model Code 1990/2010. Nevertheless there is no integrative study which addresses the choice of parameters for the simulation of the humidity diffusion phenomenon, particularly in concern to the range of parameters forwarded by Model Code 1990/2010. A software based on a Finite Difference Method Algorithm (1D and axisymmetric cases) is used to perform sensitivity analyses on the main parameters in a normal strength concrete. Then, based on the conclusions of the sensi-tivity analyses, experimental results from nine different concrete compositions are analyzed. The software is used to identify the main material parameters that better fit the experimental data. In general, the model was able to satisfactory fit the experimental results and new correlations were proposed, particularly focusing on the boundary transfer coeffi-cient.
Resumo:
The selective collection of municipal solid waste for recycling is a very complex and expensive process, where a major issue is to perform cost-efficient waste collection routes. Despite the abundance of commercially available software for fleet management, they often lack the capability to deal properly with sequencing problems and dynamic revision of plans and schedules during process execution. Our approach to achieve better solutions for the waste collection process is to model it as a vehicle routing problem, more specifically as a team orienteering problem where capacity constraints on the vehicles are considered, as well as time windows for the waste collection points and for the vehicles. The final model is called capacitated team orienteering problem with double time windows (CTOPdTW).We developed a genetic algorithm to solve routing problems in waste collection modelled as a CTOPdTW. The results achieved suggest possible reductions of logistic costs in selective waste collection.