29 resultados para Shading losses

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a critical and quantitative analysis of the influence of the Power Quality in grid connected solar photovoltaic microgeneration installations. First are introduced the main regulations and legislation related with the solar photovoltaic microgeneration, in Portugal and Europe. Next are presented Power Quality monitoring results obtained from two residential solar photovoltaic installations located in the north of Portugal, and is explained how the Power Quality events affect the operation of these installations. Afterwards, it is described a methodology to estimate the energy production losses and the impact in the revenue caused by the abnormal operation of the electrical installation. This is done by comparing the amount of energy that was injected into the power grid with the theoretical value of energy that could be injected in normal conditions. The performed analysis shows that Power Quality severally affects the solar photovoltaic installations operation. The losses of revenue in the two monitored installations M1 and M2 are estimated in about 27% and 22%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of prestressed near surface mounted fibre reinforced polymers (NSM-FRP) has been long acknowledged to be a suitable approach to strengthen and retrofit existing reinforced concrete structures. The application of a certain amount of prestress to the FRP prior to its installation provides a number of benefits, mainly related to crack width and deflection requisites at serviceability limit state conditions. After transferring the prestress to a structural element, some of the existing cracks can be closed, decreasing the vulnerability of the element to corrosion and, a certain amount of deflection can be recovered due to the introduced negative curvature. However, these benefits can only be assured if the prestress is properly preserved over time. In this context, three series of reinforced concrete beams, in a total of 10 beams, were strengthened with a prestressed carbon FRP laminate (CFRP) and monitored for about 40 days. The data obtained from these tests is in this paper presented and analysed. The observed losses of strain in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the initial strain was well-preserved over time. Additionally, the highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the benefits of prestressed NSM-FRP will not be considerably lost over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe inplane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textilereinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Companies from the motorcycles components branch are dealing with a dynamic environment, resulting from the introduction of new products and the increase of market demand. This dynamic environment requires frequent changes in production lines and requires flexibility in the processes, which can cause reductions in the level of quality and productivity. This paper presents a Lean Six Sigma improvement project performed in a production line of the company's machining sector, in order to eliminate losses that cause low productivity, affecting the fulfillment of the production plan and customer satisfaction. The use of Lean methodology following the DMAIC stages allowed analyzing the factors that influence the line productivity loss. The major problems and causes that contribute to a reduction on productivity and that were identified in this study are the lack of standardization in the setup activities and the excessive stoppages for adjustment of the processes that caused an increase of defects. Control charts, Pareto analysis and cause-and-effect diagrams were used to analyze the problem. On the improvement stage, the changes were based on the reconfiguration of the line layout as well as the modernization of the process. Overall, the project justified an investment in new equipment, the defective product units were reduced by 84% and an increase of 29% of line capacity was noticed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doctoral Thesis Civil Engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia de Sistemas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica