48 resultados para Prohibited work (Jewish law)

em Universidade do Minho


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the fracture mode I parameters of steel fibre reinforced self-compacting concrete (SFRSCC) were derived from the numerical simulation of indirect splitting tensile tests. The combined experimental and numerical research allowed a comparison between the stress-crack width (σ - w) relationship acquired straightforwardly from direct tensile tests, and the σ - w response derived from inverse analysis of the splitting tensile tests results. For this purpose a comprehensive nonlinear 3D finite element (FE) modeling strategy was developed. A comparison between the experimental results obtained from splitting tensile tests and the corresponding FE simulations confirmed the good accuracy of the proposed strategy to derive the σ – w for these composites. It is concluded that the post-cracking tensile laws obtained from inverse analysis provided a close relationship with the ones obtained from the experimental uniaxial tensile tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adding fibres to concrete provides several advantages, especially in terms of controlling the crack opening width and propagation after the cracking onset. However, distribution and orientation of the fibres toward the active crack plane are significantly important in order to maximize its benefits. Therefore, in this study, the effect of the fibre distribution and orientation on the post-cracking tensile behaviour of the steel fibre reinforced self-compacting concrete (SFRSCC) specimens is investigated. For this purpose, several cores were extracted from distinct locations of a panel and were subjected to indirect (splitting) and direct tensile tests. The local stress-crack opening relationship (σ-w) was obtained by modelling the splitting tensile test under the finite element framework and by performing an Inverse Analysis (IA) procedure. Afterwards the σ-w law obtained from IA is then compared with the one ascertained directly from the uniaxial tensile tests. Finally, the fibre distribution/orientation parameters were determined adopting an image analysis technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Direito dos Negócios, Europeu e Transnacional

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a constitutive model to simulate nonlinear behaviour of cement based materials subjected to different loading paths. The model incorporates a multidirectional fixed smeared crack approach to simulate crack initiation and propagation, whereas the inelastic behaviour of material between cracks is treated by a numerical strategy that combines plasticity and damage theories. For capturing more realistically the shear stress transfer between the crack surfaces, a softening diagram is assumed for modelling the crack shear stress versus crack shear strain. The plastic damage model is based on the yield function, flow rule and evolution law for hardening variable, and includes an explicit isotropic damage law to simulate the stiffness degradation and the softening behaviour of cement based materials in compression. This model was implemented into the FEMIX computer program, and experimental tests at material scale were simulated to appraise the predictive performance of this constitutive model. The applicability of the model for simulating the behaviour of reinforced concrete shear wall panels submitted to biaxial loading conditions, and RC beams failing in shear is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Machinery safety issues are a challenge facing manufacturers who are supposed to create and provide products in a better and faster way. In spite of their construction and technological advance, they still contribute to many potential hazards for operators and those nearby. OBJECTIVE: The aim of this study is to investigate safety aspects of metal machinery offered for sale on Internet market according to compliance with minimum and fundamental requirements. METHODS: The study was carried out with the application of a checklist prepared on the basis of Directive 2006/42/EC and Directive 2009/104/EC and regulations enforcing them into Polish law. RESULTS: On the basis of the study it was possible to reveal the safety aspects that were not met in practice. It appeared that in the case of minimum requirements the most relevant problems concerned information, signal and control elements, technology and machinery operations, whereas as far as fundamental aspects are concerned it was hard to assure safe work process. CONCLUSIONS: In spite of the fact that more and more legal acts binding in the Member Countries of the European Union are being introduced to alleviate the phenomenon, these regulations are often not fulfilled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a numerical study of the 4:1 planar contraction flow of a viscoelastic fluid described by the simplified Phan-Thien–Tanner model under the influence of slip boundary conditions at the channel walls. The linear Navier slip law was considered with the dimensionless slip coefficient varying in the range ½0; 4500. The simulations were carried out for a small constant Reynolds number of 0.04 and Deborah numbers (De) varying between 0 and 5. Convergence could not be achieved for higher values of the Deborah number, especially for large values of the slip coefficient, due to the large stress gradients near the singularity of the reentrant corner. Increasing the slip coefficient leads to the formation of two vortices, a corner and a lip vortex. The lip vortex grows with increasing slip until it absorbs the corner vortex, creating a single large vortex that continues to increase in size and intensity. In the range De = 3–5 no lip vortex was formed. The flow is characterized in detail for De ¼ 1 as function of the slip coefficient, while for the remaining De only the main features are shown for specific values of the slip coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and physiological comfort, at work and during leisure time, is important to human health and motivation. A growing number of jobs require workers to sit. Most clothes, except those intended for wheelchair users, were designed for walking or the standing position. Clothing designs should be user-oriented and meet users’ needs. Garment design should conform to body position and posture, not just shape and size. In this paper we present the ergometric impact of a new type of trousers designed to adapt to changes in position. Concentrations of compression forces, temperature and pressure were documented in an exploratory pilot study and contrasted to traditional designs. The new trousers showed significant decreases in compression force concentration, especially in and around the knees and waist. Most participants identified comfort as an important factor when purchasing a pair of trousers and that, for working purposes, they would prefer these special trousers rather than traditional designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Direitos Humanos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Direito Administrativo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Direito Administrativo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia