8 resultados para N methyl dextro aspartic acid receptor
em Universidade do Minho
Resumo:
Congenital diaphragmatic hernia (CDH) is characterised by a spectrum of lung hypoplasia and consequent pulmonary hypertension, leading to high morbidity and mortality rates. Moreover, CDH has been associated with an increase in the levels of pulmonary neuroendocrine factors, such as bombesin and ghrelin, and a decrease in the action of retinoic acid (RA). The present study aimed to elucidate the interaction between neuroendocrine factors and RA. In vitro analyses were performed on Sprague-Dawley rat embryos. Normal lung explants were treated with bombesin, ghrelin, a bombesin antagonist, a ghrelin antagonist, dimethylsulfoxide (DMSO), RA dissolved in DMSO, bombesin plus RA and ghrelin plus RA. Hypoplastic lung explants (nitrofen model) were cultured with bombesin, ghrelin, bombesin antagonist or ghrelin antagonist. The lung explants were analysed morphometrically, and retinoic acid receptor (RAR) α, β and γ expression levels were assessed via Western blotting. Immunohistochemistry analysis of RAR was performed in normal and hypoplastic lungs 17.5 days post-conception (dpc). Compared with the controls, hypoplastic lungs exhibited significantly higher RARα/γ expression levels. Furthermore considering hypoplastic lungs, bombesin and ghrelin antagonists decreased RARα/γ expression. Normal lung explants (13.5 dpc) treated with RA, bombesin plus RA, ghrelin plus RA, bombesin or ghrelin exhibited increased lung growth. Moreover, bombesin and ghrelin increased RARα/γ expression levels, whereas the bombesin and ghrelin antagonists decreased RARα/γ expression. This study demonstrates for the first time that neuroendocrine factors function as lung growth regulators, sensitising the lung to the action of RA through up-regulation of RARα and RARγ.
Epidermis recreation in spongy-like hydrogels: New opportunities to explore epidermis-like analogues
Resumo:
[Excerpt] On the road to successfully achieving skin regeneration, 3D matrices/scaffolds that provide the adequate physico-chemical and biological cues to recreate the ideal healing environment are believed to be a key element [1], [2] and [3]. Numerous polymeric matrices derived from both natural [4] and [5] and synthetic [6], [7] and [8] sources have been used as cellular supports; nowadays, fewer matrices are simple carriers, and more and more are ECM analogues that can actively participate in the healing process. Therefore, the attractive characteristics of hydrogels, such as high water content, tunable elasticity and facilitated mass transportation, have made them excellent materials to mimic cells’ native environment [9]. Moreover, their hygroscopic nature [10] and possibility of attaining soft tissues-like mechanical properties mean they have potential for exploitation as wound healing promoters [11], [12], [13] and [14]. Nonetheless, hydrogels lack natural cell adhesion sites [15], which limits the maximization of their potential in the recreation of the cell niche. This issue has been tackled through the use of a range of sophisticated approaches to decorate the hydrogels with adhesion sequences such as arginine-glycine-aspartic acid (RGD) derived from fibronectin [16], [17] and [18], and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) derived from laminin [18] and [19], which not only aim to modulate cell adhesion, but also influencing cell fate and survival [18]. Nonetheless, its widespread use is still limited by significant costs associated with the use of recombinant bioactive molecules.
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Dissertação de mestrado em Química Medicinal
Resumo:
Context: Caffeic acid is described as antibacterial, but this bioactive molecule has some issues regarding solubility and stability to environmental stress. Thus, encapsulation devices are required. Objective: The aim of this work was to study the effect of the caffeic acid encapsulation by cyclodextrins on its antibacterial activity. Materials and methods: The interactions between the caffeic acid and three cyclodextrins (-cyclodextrin (CD), 2-hydroxypropyl--cyclodextrin (HPCD) and methyl--cyclodextrin were study. Results and discussion: The formation of an aqueous soluble inclusion complex was confirmed for CD and HPCD with a 1:1 stoichiometry. The CD/caffeic acid complex showed higher stability than HPCD/caffeic acid. Caffeic acid antibacterial activity was similar at pH 3 and pH 5 against the three bacteria (K. pneumoniae, S. epidermidis and S. aureus). Conclusions: The antibacterial activity of the inclusion complexes was described here for the first time and it was shown that the caffeic acid activity was remarkably enhanced by the cyclodextrins encapsulation.
Resumo:
Tese de Doutoramento em Ciências - Especialidade em Biologia