24 resultados para Magnetic parameters

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of stem cells is a promising therapeutic approach for the substantial challenge to regenerate cartilage. Considering the two prerequisites, namely the use of a 3D system to enable the chondrogenic differentiation and growth factors to avoid dedifferentiation, the diffusion efficiency of essential biomolecules is an intrinsic issue. We already proposed a liquified bioencapsulation system containing solid microparticles as cell adhesion sites1. Here, we intend to use the optimized system towards chondrogenic differentiation by encapsulating stem cells and collagenII-TGF-β3 PLLA microparticles. As a proof-of-concept, magnetite-nanoparticles were incorporated into the multilayered membrane. This can be a great advantage after implantation procedures to fixate the capsules in situ with the held of an external magnetic patch and for the follow-up through imaging. Results showed that the production of glycosaminoglycans and the expression of cartilage-relevant markers (collagen II, Sox9, aggrecan, and COMP) increased up to 28 days, while hypertrophic (collagen X) and fibrotic (collagen I) markers were downregulated. The presence of nanofibers in the newly deposited ECM was visualized by SEM, which resembles the collagen fibrils of native cartilage. The presence of the major constituent of cartilage, collagen II, was detected by immunocytochemistry and afranin-O and alcian blue stainings revealed a basophilic ECM deposition, which is characteristic of neocartilage. These findings suggest that the proposed system may provide a suitable environment for chondrogenic differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tendon's regeneration is limited, demanding for cell-based strategies to fully restore their functionality upon injury. The concept of magnetic force-based TE(1), generally using magnetic nanoparticles may enable, for example, stem cell stimulation and/or remote control over TE constructs. Thus, we originally propose the development of magnetic cell sheets (magCSs) with tenogenic capability, aimed at promoting tendon's regeneration. A Tenomodulin (TNMD+) subpopulation was sorted from human adipose stem cells (hASCs), using TNMD-coated immunomagnetic beads(2) and used as cell source for the development of magCSs. Briefly, cells were labeled with iron oxide composite particles (Micromod) and cultured for 7 days in α-MEM medium with or without magnetic stimulation provided by a magnetic device (nanoTherics). CSs were retrieved from the plates using magnet attraction as contiguous sheets of cells within its own deposited ECM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, five types of polymer repair materials were selected for investigation of the influence of sample shape, deformation rate and test temperature on the mechanical properties determined with an uniaxial tensile test. The results showed the clear effect of measurement conditions on tensile strength, elongation and modulus of elasticity. The highest tensile strength and modulus of elasticity were exhibited by epoxy resin for the filling of concrete cracks, which achieved 1% elongation. The lowest coefficient of dispersion characterized the results of tensile test carried out using dumbbell samples at a deformation rate of 50 mm/min. The effect of temperature varied with the material type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that vernacular architecture may bear important lessons on hazard mitigation and that well-constructed examples showing traditional seismic resistant features can present far less vulnerability than expected, this study aims at understanding the resisting mechanisms and seismic behavior of vernacular buildings through detailed finite element modeling and nonlinear static (pushover) analysis. This paper focuses specifically on a type of vernacular rammed earth constructions found in the Portuguese region of Alentejo. Several rammed earth constructions found in the region were selected and studied in terms of dimensions, architectural layout, structural solutions, construction materials and detailing and, as a result, a reference model was built, which intends to be a simplified representative example of these constructions, gathering the most common characteristics. Different parameters that may affect the seismic response of this type of vernacular constructions have been identified and a numerical parametric study was defined aiming at evaluating and quantifying their influence in the seismic behavior of this type of vernacular buildings. This paper is part of an ongoing research which includes the development of a simplified methodology for assessing the seismic vulnerability of vernacular buildings, based on vulnerability index evaluation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monitoring data collected during tunnel excavation can be used in inverse analysis procedures in order to identify more realistic geomechanical parameters that can increase the knowledge about the interested formations. These more realistic parameters can be used in real time to adapt the project to the real structure in situ behaviour. However, monitoring plans are normally designed for safety assessment and not especially for the purpose of inverse analysis. In fact, there is a lack of knowledge about what types and quantity of measurements are needed to succeed in identifying the parameters of interest. Also, the optimisation algorithm chosen for the identification procedure may be important for this matter. In this work, this problem is addressed using a theoretical case with which a thorough parametric study was carried out using two optimisation algorithms based on different calculation paradigms, namely a conventional gradient-based algorithm and an evolution strategy algorithm. Calculations were carried for different sets of parameters to identify several combinations of types and amount of monitoring data. The results clearly show the high importance of the available monitoring data and the chosen algorithm for the success rate of the inverse analysis process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PhD Thesis in Sciences Specialization in Chemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite films with filler microparticles of Barium ferrite dispersed within P(VDF-TrFE) as polymeric matrix have been prepared by solvent evaporation. The lowest BaFO content of 1% wt acts as a small defect within the polymeric matrix, reducing the values of the dielectric and mechanical properties of the pure P(VDF-TrFE). For filler contents up to a 20%, the BaFO filler reinforces the matrix and measured properties increase their values. This trend is not followed by the electrical conductivity. We extended the study to fibers composed by BaFe12O19 microparticles in a PVDF matrix. Due to the big size of BaFO particles (1 micron in diameter), proper fabrication of the fiber shaped composites has not been achieved. We found that true BaFO content are always lower than nominal ones. Results are discussed in terms of the influence of size and morphology of the BaFO particles on the initial properties of the polymeric matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of all innovations in stent design, commonly used metallic stents present several problems such as corrosion, infection and restenosis, leading to health complications or even death of patients. In this context, the present paper reports a systematic investigation on designing and development of 100% fiber based stents, which can eliminate or minimize the problems with existing metallic stents. For this purpose, braided stents were produced by varying different materials, structural and process parameters such as mono-filament type and diameter, braiding angle and mandrel diameter. The influence of these design parameters on mechanical behavior as well as stent's porosity was thoroughly investigated, and suitable parameters were selected for developing a stentwith mechanical characteristics and porosity matching with the commercial stents. According to the experimental results, the best performance was achieved with a polyester stent designed with 0.27 mm monofilament diameter, braiding angle of 35° and mandrel diameter of 6 mm, providing similar properties to commercial Nitinol stents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulimia nervosa (BN) is an eating disorder characterized by recurrent episodes of binge eating and inappropriate compensatory behaviors (such as purging, fasting, or excessive exercise) to prevent weight gain. BN has been associated with deficits in inhibitory control processes. The basal ganglia specifically, the nucleus accumbens (NAc) and the caudate nucleus (CN) are part of the frontostriatal circuits involved in inhibitory control. The main goal of this study was to investigate the presence of morphological alterations in the NAc and the CN in a sample of patients diagnosed with BN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Ecology