12 resultados para Lighting, Architectural and decorative.

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Arquitectura

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto de mestrado em Património e Turismo Cultural

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Arquitectura (área de especialização em Cultura Arquitectónica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Arquitectura (área de especialização de Cultura Arquitectónica)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in computation allow for the integration of design and simulation of highly interrelated systems, such as hybrids of structural membranes and bending active elements. The engaged complexities of forces and logistics can be mediated through the development of materials with project specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noble metal powders containing gold and silver have been used for many centuries, providing different colours in the windows of the medieval cathedrals and in ancient Roman glasses. Nowadays, the interest in nanocomposite materials containing noble nanoparticles embedded in dielectric matrices is related with their potential use for a wide range of advanced technological applications. They have been proposed for environmental and biological sensing, tailoring colour of functional coatings, or for surface enhanced Raman spectroscopy. Most of these applications rely on the so-called localised surface plasmon resonance absorption, which is governed by the type of the noble metal nanoparticles, their distribution, size and shape and as well as of the dielectric characteristics of the host matrix. The aim of this work is to study the influence of the composition and thermal annealing on the morphological and structural changes of thin films composed of Ag metal clusters embedded in a dielectric TiO2 matrix. Since changes in size, shape and distribution of the clusters are fundamental parameters for tailoring the properties of plasmonic materials, a set of films with different Ag concentrations was prepared. The optical properties and the thermal behaviour of the films were correlated with the structural and morphological changes promoted by annealing. The films were deposited by DC magnetron sputtering and in order to promote the clustering of the Ag nanoparticles the as-deposited samples were subjected to an in-air annealing protocol. It was demonstrated that the clustering of metallic Ag affects the optical response spectrum and the thermal behaviour of the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO2), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO2 matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ CAu ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO2 matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Architectural design is often associated with aesthetics and style, but it is also very important to building performance and sustainability. There are some studies associating architectural design to the choice for materials from sustainable sources, to indoor air quality, to energy efficiency and productivity. This article takes a step further to analyse how the use of efficient interior design techniques can impact the habitable space in order to improve building sustainability in land use. Smart interior design, a current trend related to the use of efficient and flexible furniture and movable walls in tiny or compact apartments, is analysed. A building with a standard design is used as a case study reference building and compared to a proposed theoretical design alternative using smart interior design techniques. In order to correctly assess sustainability performance, a quantifiable and verified method is used. Results showed that the use of smart interior design techniques can greatly reduce buildingsâ impact on the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Architectural (bad) smells are design decisions found in software architectures that degrade the ability of systems to evolve. This paper presents an approach to verify that a software architecture is smellfree using the Archery architectural description language. The language provides a core for modelling software architectures and an extension for specifying constraints. The approach consists in precisely specifying architectural smells as constraints, and then verifying that software architectures do not satisfy any of them. The constraint language is based on a propositional modal logic with recursion that includes: a converse operator for relations among architectural concepts, graded modalities for describing the cardinality in such relations, and nominals referencing architectural elements. Four architectural smells illustrate the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software reconfigurability became increasingly relevant to the architectural process due to the crescent dependency of modern societies on reliable and adaptable systems. Such systems are supposed to adapt themselves to surrounding environmental changes with minimal service disruption, if any. This paper introduces an engine that statically applies reconfigurations to (formal) models of software architectures. Reconfigurations are specified using a domain specific language— ReCooPLa—which targets the manipulation of software coordinationstructures,typicallyusedinservice-orientedarchitectures(soa).Theengine is responsible for the compilation of ReCooPLa instances and their application to the relevant coordination structures. The resulting configurations are amenable to formal analysis of qualitative and quantitative (probabilistic) properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a reconfigurable system, the response to contextual or internal change may trigger reconfiguration events which, on their turn, activate scripts that change the system׳s architecture at runtime. To be safe, however, such reconfigurations are expected to obey the fundamental principles originally specified by its architect. This paper introduces an approach to ensure that such principles are observed along reconfigurations by verifying them against concrete specifications in a suitable logic. Architectures, reconfiguration scripts, and principles are specified in Archery, an architectural description language with formal semantics. Principles are encoded as constraints, which become formulas of a two-layer graded hybrid logic, where the upper layer restricts reconfigurations, and the lower layer constrains the resulting configurations. Constraints are verified by translating them into logic formulas, which are interpreted over models derived from Archery specifications of architectures and reconfigurations. Suitable notions of bisimulation and refinement, to which the architect may resort to compare configurations, are given, and their relationship with modal validity is discussed.