22 resultados para Finite-strain Consolidation
em Universidade do Minho
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
The present study proposes a dynamic constitutive material interface model that includes non-associated flow rule and high strain rate effects, implemented in the finite element code ABAQUS as a user subroutine. First, the model capability is validated with numerical simulations of unreinforced block work masonry walls subjected to low velocity impact. The results obtained are compared with field test data and good agreement is found. Subsequently, a comprehensive parametric analysis is accomplished with different joint tensile strengths and cohesion, and wall thickness to evaluate the effect of the parameter variations on the impact response of masonry walls.
Resumo:
Using prestressed near surface mounted fibre reinforced polymers (NSM-FRP) is nowadays regaining the attention from the scientific community for the strengthening of existing reinforced concrete (RC) structures. The application of prestressed internal FRP bars and externally bonded prestressed FRPs has already been deeply investigated and revealed considerable benefits when compared to the corresponding passive solutions. A certain amount of prestress provides benefits mainly associated to structural integrity and material durability. Immediately after prestress transference, it is possible to close some of the existing cracks, decreasing the susceptibility of the element to corrosion and, a certain amount of deflection can be recovered due to the creation of a negative curvature. However, very few studies have been carried out to properly assess the preservation of prestress over time. In this context, several reinforced concrete beams strengthened with prestressed NSM carbon FRP (CFRP) laminates were prestressed and monitored for about 40 days. The data obtained from these experimental programs is in this paper presented and analysed. The observed prestress losses were later modelled using finite elements analysis and, although this topic is not addressed in this paper, the obtained results revealed considerable precision. The largest strain losses in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the applied pre-strain was retained over time. The highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the application of prestressed NSM-FRP will be very effective over time.
Resumo:
This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.
Resumo:
The regular use of the computer in the office contributed to the appearance of many risk factors related with work-related musculoskeletal disorders (WRMSD) such as maintaining static sitting postures for long time and awkward postures of the head, neck and upper limbs, leading to increased muscle activity in the cervical spine and shoulders. The objective of this study was to evaluate the presence of risk factors for WRMSD in an office using the Rapid Assessment Office Strain method (ROSA). Based on the results of this ergonomic evaluation, an occupational gym program was designed and implemented. Thirty-eight workplaces were evaluated using the observation of the tasks and pictures records in order to characterize those tasks in more detail. The ROSA tool was applied by an observer, who selected the appropriate score based on the worker's posture as well as the time spent in each posture. Scores were recorded for the sections of the method, specifically Chair, Monitor and Mouse and Keyboard and Telephone. The scores were recorded in a sheet developed for the method. The mean ROSA final score was 3.61 ± 0.64, for Chair section was 3.45 ± 0.55, to Monitor and Telephone section was 3.11 ± 0.61, and to Mouse and Keyboard section was 2.11 ± 0.31. The results led to understand that the analyzed tasks represent situations of risk of discomfort and, according to the methods guidelines, further research and modifications of the workplace may be necessary. It should be emphasized that these scores may not be related to the poor available equipment but with the need to optimize their use by the workers. It was noticed also that the interaction of workers with the tasks and the adopted sitting posture at the computer throughout the day have effects at a muscular level, essentially for the cervical area and shoulders. ROSA tool is an useful and easy method to assess several risk factors associated with WRMSD, also allowing the design of specific occupational gym programs.
Resumo:
PhD thesis in Bioengineering
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
A new very high-order finite volume method to solve problems with harmonic and biharmonic operators for one- dimensional geometries is proposed. The main ingredient is polynomial reconstruction based on local interpolations of mean values providing accurate approximations of the solution up to the sixth-order accuracy. First developed with the harmonic operator, an extension for the biharmonic operator is obtained, which allows designing a very high-order finite volume scheme where the solution is obtained by solving a matrix-free problem. An application in elasticity coupling the two operators is presented. We consider a beam subject to a combination of tensile and bending loads, where the main goal is the stress critical point determination for an intramedullary nail.
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
We study the temperature dependent magnetic susceptibility of a strained graphene quantum dot by using the determinant quantum Monte Carlo method. Within the Hubbard model on a honeycomb lattice, our unbiased numerical results show that a relative small interaction $U$ may lead to a edge ferromagnetic like behavior in the strained graphene quantum dot, and a possible room temperature transition is suggested. Around half filling, the ferromagnetic fluctuations at the zigzag edge is strengthened both markedly by the on-site Coulomb interaction and the strain, especially in low temperature region. The resultant strongly enhanced ferromagnetic like behavior may be important for the development of many applications.
Resumo:
A newly developed strain rate dependent anisotropic continuum model is proposed for impact and blast applications in masonry. The present model adopted the usual approach of considering different yield criteria in tension and compression. The analysis of unreinforced block work masonry walls subjected to impact is carried out to validate the capability of the model. Comparison of the numerical predictions and test data revealed good agreement. Next, a parametric study is conducted to evaluate the influence of the tensile strengths along the three orthogonal directions and of the wall thickness on the global behavior of masonry walls.
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.