28 resultados para Feature learning
em Universidade do Minho
Resumo:
O objetivo deste trabalho é apresentar os resultados da análise das concepções de dois protagonistas de uma reforma curricular que está sendo implementada numa escola de engenharia. A principal característica do novo currículo é o uso de projetos e oficinas como atividades complementares a serem realizadas pelos estudantes. As atividades complementares acontecerão em paralelo ao trabalho realizado nas disciplinas sem que haja uma relação de interdisciplinaridade. O novo currículo está sendo implantado desde fevereiro de 2015. Segundo Pacheco (2005) há dois momentos, dentre outros, no processo de mudança curricular, o currículo “ideal”, determinado por dimensões epistemológica, política, econômica, ideológica, técnica, estética, e histórica e, que recebe influência direta daquele que idealiza e cria o novo currículo e, o currículo “formal” que se traduz na prática implementada na escola. São essas duas etapas estudadas nesta pesquisa. Para isso serão considerados como fontes de dados dois protagonistas, um mais ligado à concepção do currículo e outro da sua implementação, a partir dos quais se busca compreender as motivações, crenças e percepções que, por sua vez, determinam a reforma curricular. Entrevistas semiestruturadas foram utilizadas como técnica de pesquisa, com o propósito de se entender a gênese da proposta e as mudanças entre essas duas etapas. Os dados revelam que mudanças aconteceram desde a idealização até a formalização do currículo, motivadas por demandas do processo de implementação, revela ainda diferenças na visão de currículo e a motivação para romper com padrões na formação de engenheiros no Brasil.
Resumo:
The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.
Resumo:
Higher education in Portugal, in the last forty years, has undergone profound changes with the enlargement of public higher education network, the appearance of new institutions, the quantity and the heterogeneity of students. The implementation of the Bologna Process in European community countries led to the redesign of higher education Portuguese courses as well as their corresponding curricula. In recent years, the use of Project-led education was one of the most significant changes in teaching and learning, particularly in engineering in higher education in Portugal. This teaching methodology encourages students and teachers to undertake new roles, new responsibilities and a new learning perspective. This study aims at understanding whether the role of the tutor is to be suitable to the needs and expectations of Project-led education students. These changes however are not only structural. At the University of Minho, new teaching and learning methodologies were adopted, which could guide the training of professionals on to the twenty-first century. The opportunity arising from the implementation of Project-led education in Engineering methodology was used in the University of Minho’s courses. This teaching method is intended to provide students with educational support programs that benefit the academic performance, allowing the opportunity to upgrade, train and develop the ability to study and learn more effectively. Through the Project-led education it is possible to provide students with techniques and procedures and develop the ability to communicate orally and in writing. Students and teachers have assumed new roles in the teaching-learning process allowing in one hand the students to explore, discover and question themselves about some knowledge and on the other hand the teachers to change to a tutor, a companion and to a student project guide. Therefore, surveys were analyzed, comprising questions about the most significant contribution of the tutor as well as if there are some initial expectations that have not been foreseen by the tutor.
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.
Resumo:
Relatório de estágio de mestrado em Ensino de Informática
Resumo:
Dissertação de mestrado integrado em Psicologia
Resumo:
The chapter presents a theoretical proposal of three analytical models of Adult Learning and Education (ALE) policies. Some analytical categories and the corresponding dimensions are organised according to the ALE rationale which is typical of each social policy model. Historical, cultural and educational features are mentioned in connexion with the different policy models and its interpretative capacity to making sense of policies and practices implemented in Germany, Portugal and Sweden. !e analysis includes the states of the art and the official representations of ALE produced by the respective national authorities through national reports which were presented to CONFINTEA VI (2009).
Resumo:
Students have different ways for learning and processing information. Some students prefer learning through seeing while others prefer learning through listening; some students prefer doing activities while other prefer reflecting.Some students reason logically, while others reason intuitively, etc. Identifying the learning style of each student, and providing learning content based on these styles represents a good method to enhance the learning quality. However, there are no efforts onhow to detect the students’ learning styles in mobile computer supported collaborative learning (MCSCL) environments. We present in this paper new ways for automatically detecting the learning styles of students in MCSCL environments based on the learning style model of Felder-Silverman. The identified learning styles of students could be then stored and used at anytime toassign each one of them to his/her appropriate learning group.
Resumo:
[Extrat] The answer to the social and economic challenges that it is assumed literacy (or its lack) puts to developed countries deeply concerns public policies of governments namely those of the OECD area. In the last decades, these concerns gave origin to several and diverse monitoring devices, initiatives and programmes for reading (mainly) development, putting a strong stress on education. UNESCO (2006, p. 6), for instance, assumes that the literacy challenge can only be met raising the quality of primary and secondary education and intensifying programmes explicitly oriented towards youth and adult literacy. (...)
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus.
Resumo:
Series: "Advances in intelligent systems and computing , ISSN 2194-5357, vol. 417"
Resumo:
Tese de Doutoramento em Tecnologias e Sistemas de Informação