34 resultados para Dynamic characteristics
em Universidade do Minho
Resumo:
Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.
Resumo:
Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Resumo:
Electric Vehicles (EVs) have limited energy storage capacity and the maximum autonomy range is strongly dependent of the driver's behaviour. Due to the fact of that batteries cannot be recharged quickly during a journey, it is essential that a precise range prediction is available to the driver of the EV. With this information, it is possible to check if the desirable destination is achievable without a stop to charge the batteries, or even, if to reach the destination it is necessary to perform an optimized driving (e.g., cutting the air-conditioning, among others EV parameters). The outcome of this research work is the development of an Electric Vehicle Assistant (EVA). This is an application for mobile devices that will help users to take efficient decisions about route planning, charging management and energy efficiency. Therefore, it will contribute to foster EVs adoption as a new paradigm in the transportation sector.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico
Resumo:
This study deals with the characterization of masonry mortars produced with different binders and sands. Several properties of the mortars were determined, like consistence, compressive and flexural strengths, shrinkage and fracture energy. By varying the type of binder (Portland cement, hydrated lime and hydraulic lime) and the type of sand (natural or artificial), it was possible to draw some conclusions about the influence of the composition on mortars properties. The results showed that the use of Portland cement makes the achievement of high strength classes easier. This was due to the slower hardening of lime compared with cement. The results of fracture energy tests showed much higher values for artificial sand mortars when compared with natural sand ones. This is due to the higher roughness of artificial sand particles which provided better adhesion between sand and binder.
Resumo:
The Our Lady of Conception church is located in village of Monforte (Portugal) and is not in use nowadays. The church presents structural damage and, consequently, a study was carried out. The study involved the survey of the damage, dynamic identification tests under ambient vibration and the numerical analysis. The church is constituted by the central nave, the chancel, the sacristy and the corridor to access the pulpit. The masonry walls present different thickness, namely 0.65 m in the chancel, 0.70 m in the sacristy, 0.92 in the central nave and 0.65 m in the corridor. The masonry walls present 8 buttresses with different dimensions. The total longitudinal and transversal dimensions of the church are equal to 21.10 m and 14.26 m, respectively. The survey of the damage showed that, in general, the masonry walls are in good conditions, with exception of the transversal walls of the nave, which present severe cracks. The arches of the vault presents also severe cracks along the central nave. As consequence, the infiltrations have increased the degradation of the vault and paintings. Furthermore, the foundations present settlements in the Southwest direction. The dynamic identification test were carried out under the action of ambient excitation of the wind and using 12 piezoelectric accelerometers of high sensitivity. The dynamic identification tests allowed to estimate the dynamic properties of the church, namely frequencies, mode shapes and damping ratios. A FEM numerical model was prepared and calibrated, based on the first four experimental modes estimated in the dynamic identification tests. The average error between the experimental and numerical frequencies of the first four modes is equal to 5%. After calibration of the numerical model, pushover analyses with a load pattern proportional to the mass, in the transversal and longitudinal direction of the church, were performed. The results of the analysis numerical allow to conclude that the most vulnerable direction of the church is in the transversal one and the maximum load factor is equal to 0.35.
Resumo:
The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non-linear static analysis and linear and non-linear dynamic analysis. Unreinforced masonry structures present low tensile strength and the linear analyses seem to not be adequate for assessing their structural behaviour. On the other hand, the static and dynamic non-linear analyses are complex, since they involve large time computational requirements and advanced knowledge of the practitioner. The non-linear analysis requires advanced knowledge on the material properties, analysis tools and interpretation of results. The limit analysis with macro-blocks can be assumed as a more practical method in the estimation of maximum load capacity of structure. Furthermore, the limit analysis require a reduced number of parameters, which is an advantage for the assessment of ancient and historical masonry structures, due to the difficult in obtaining reliable data.
Resumo:
Human activity is very dynamic and subtle, and most physical environments are also highly dynamic and support a vast range of social practices that do not map directly into any immediate ubiquitous computing functionally. Identifying what is valuable to people is very hard and obviously leads to great uncertainty regarding the type of support needed and the type of resources needed to create such support. We have addressed the issues of system development through the adoption of a Crowdsourced software development model [13]. We have designed and developed Anywhere places, an open and flexible system support infrastructure for Ubiquitous Computing that is based on a balanced combination between global services and applications and situated devices. Evaluation, however, is still an open problem. The characteristics of ubiquitous computing environments make their evaluation very complex: there are no globally accepted metrics and it is very difficult to evaluate large-scale and long-term environments in real contexts. In this paper, we describe a first proposal of an hybrid 3D simulated prototype of Anywhere places that combines simulated and real components to generate a mixed reality which can be used to assess the envisaged ubiquitous computing environments [17].
Resumo:
Doctoral Thesis Civil Engineering
Resumo:
In this study, a high-performance composite was prepared from jute fabrics and polypropylene (PP). In order to improve the compatibility of the polar fibers and the non-polar matrix, alkyl gallates with different hydrophobic groups were enzymatically grafted onto jute fabric by laccase to increase the surface hydrophobicity of the fiber. The grafting products were characterized by FTIR. The results of contact angle and wetting time showed that the hydrophobicity of the jute fabrics was improved after the surface modification. The effect of the enzymatic graft modification on the properties of the jute/PP composites was evaluated. Results showed that after the modification, tensile and dynamic mechanical properties of composites improved, and water absorption and thickness swelling clearly decreased. However, tensile properties drastically decreased after a long period of water immersion. The thermal behavior of the composites was evaluated by TGA/DTG. The fiber-matrix morphology in the modified jute/PP composites was confirmed by SEM analysis of the tensile fractured specimens.
Resumo:
This work demonstrates the role of defects generated during rapid thermal annealing of pulsed laser deposited ZnO/Al2O3 multilayer nanostructures in presence of vacuum at different temperatures (Ta) (500–900 C) on their electrical conductance and optical characteristics. Photoluminescence (PL) emissions show the stronger green emission at Ta 600 C and violet–blue emission at TaP800 C, and are attributed to oxygen vacancies and zinc related defects (zinc vacancies and interstitials) respectively. Current–voltage (I–V) characteristics of nanostructures with rich oxygen vacancies and zinc related defects display the electroforming free resistive switching (RS) characteristics. Nanostructures with rich oxygen vacancies exhibit conventional and stable RS behavior with high and low resistance states (HRS/LRS) ratio 104 during the retention test. Besides, the dominant conduction mechanism of HRS and LRS is explained by trap-controlled-space-charge limited conduction mechanism, where the oxygen vacancies act as traps. On the other hand, nanostructures with rich zinc related defects show a diode-like RS behavior. The rectifying ratio is found to be sensitive on the zinc interstitials concentration. It is assumed that the rectifying behavior is due to the electrically formed interface layer ZnAl2O4 at the Zn defects rich ZnO crystals – Al2O3 x interface and the switching behavior is attributed to the electron trapping/de-trapping process at zinc vacancies.
Resumo:
The effect of varying separator membrane physical parameters such as degree of porosity, tortuosity and thickness, on battery delivered capacity was studied in order to optimize performance of lithium-ion batteries. This was achieved by a theoretical mathematical model relating the Bruggeman coefficient with the degree of porosity and tortuosity. The inclusion of the separator membrane in the simulation model of the battery system does not affect the delivered capacity of the battery. The ionic conductivity of the separator and consequently the delivered capacity values obtained at different discharge rates depends on the value of the Bruggeman coefficient, which is related with the degree of porosity and tortuosity of the membrane. Independently of scan rate, the optimal value of the degree of porosity is above 50% and the separator thickness should range between 1 μm at 32 μm for improved battery performance.
Resumo:
Poly(vinylidene fluoride), PVDF, films and membranes were prepared by solvent casting from dimethylformamide, DMF, by systematically varying polymer/solvent ratio and solvent evaporation temperature. The effect of the processing conditions on the morphology, degree of porosity, mechanical and thermal properties and crystalline phase of the polymer were evaluated. The obtained microstructure is explained by the Flory-Huggins theory. For the binary system, the porous membrane formation is attributed to a spinodal decomposition of the liquid-liquid phase separation. The morphological features were simulated through the correlation between the Gibbs total free energy and the Flory-Huggins theory. This correlation allowed the calculation of the PVDF/DMF phase diagram and the evolution of the microstructure in different regions of the phase diagram. Varying preparation conditions allow tailoring polymer 2 microstructure while maintaining a high degree of crystallinity and a large β crystalline phase content. Further, the membranes show adequate mechanical properties for applications in filtration or battery separator membranes.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.