10 resultados para Delivery of goods--Egypt--Oxyrhynchite Nome.

em Universidade do Minho


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Biofísica e Bionanossistemas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in population age structure are a major concern and represent a priority in the agendas and policies of the developed world, which are demanding for renewed models of social and healthcare as well as assistance services to the elderly population. Studies indicate that as far as possible these types of services should desirably be provided at the user’s home, and that ICT-based solutions can have tremendous impact on the delivery of new services. This paper highlight and discusses some of the main results of a project undertaken in a Portuguese Municipality that demonstrates the potential contribution of an e-Marketplace of care and assistance services to the well-being of elderly people. Studies undertaken allowed identifying the main services that should be provided by such e-Marketplace (termed GuiMarket), the relevance that the population grant to this platform and, conversely, the fact that the Digital Divide phenomena influences the potential utilization of this project (and alike projects). The findings support that there is a strong relation between age and qualifications, and between access to ICT and the intended use of GuiMarket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbiology as a scientific discipline recognised the need to preserve microorganisms for scientific studies establishing from its very beginning research culture collections (CC). Later on, to better serve different scientific fields and bioindustries with the increasing number of strains of scientific, medical, ecological and biotechnological importance public service CC were established with the specific aims to support their user communities. Currently, the more developed public service CC are recognised as microBiological Resources Centres (mBRC). mBRC are considered to be one of the key elements for sustainable international scientific infrastructure, which is necessary to underpin successful delivery of the benefits of biotechnology, whether within the health sector, the industrial sector or other sectors, and in turn ensure that these advances help drive economic growth. In more detail, mBRCs are defined by Organisation for Economic Co-operation and Development (OECD) as service providers and repositories of the living cells, genomes of organisms, and information relating to heredity and functions of biological systems. mBRCs contain collections of culturable organisms (e.g., microorganisms, plant, animal cells), replicable parts of these (e.g. genomes, plasmids, virus, cDNAs), viable but not yet culturable organisms, cells and tissues, as well as database containing molecular, physiological and structural information relevant to these collections and related bioinformatics. Thus mBRCs are fundamental to harnessing and preserving the world’s microbial biodiversity and genetic resources and serve as an essential element of the infrastructure for research and development. mBRCs serve a multitude of functions and assume a range of shapes and forms. Some are large national centres performing a comprehensive role providing access to diverse organisms. Other centres play much narrower, yet important, roles supplying limited but crucial specialised resources. In the era of the knowledge-based bio-economy mBRCs are recognised as vital element to underpinning the biotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em European and Transglobal Business Law

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Industrial

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5  10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stem cell niche organization and dynamics provide valuable cues for the development of mimetic environments that could have potential to stimulate the regenerative process. We propose the use of biodegradable biomaterials to produce closed miniaturised structures able to encapsulate different cell types or bioactive molecules. In particular, capsules are fabricated using the so-called layer-by-layer technology, where the consecutive (nano-sized) layers are well stabilized by electrostatic interactions or other weak forces. Using alginate-based spherical templates containing cells or other elements (e.g. proteins, magnetic nanoparticles, microparticles) it is possible to produce liquefied capsules that may entrap the entire cargo under mild conditions. The inclusion of liquefied micropcapsules may be used to produce hierarchical compartmentalised systems for the delivery of bioactive agents. The presence of solid microparticles inside such capsules offers adequate surface area for adherent cell attachment increasing the biological performance of these hierarchical systems, while maintain both permeability and injectability. We demonstrated that the encapsulation of distinct cell types (including mesenchymal stem cells and endothelial cells) enhances the osteogenic capability of this system, that could be useful in bone tissue engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Molecular Genetics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PhD in Chemical and Biological Engineering