211 resultados para Polglase, Loveday, 1804-1822.
Resumo:
Electric Vehicles (EVs) are increasingly used nowadays, and different powertrain solutions can be adopted. This paper describes the control system of an axial flux Permanent Magnet Synchronous Motor (PMSM) for EVs powertrain. It is described the implemented Field Oriented Control (FOC) algorithm and the Space Vector Modulation (SVM) technique. Also, the mathematical model of the PMSM is presented. Both, simulation and experimental, results with different types of mechanical load are presented. The experimental results were obtained using a laboratory test bench. The obtained results are discussed.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1.º do Ensino Básico
Resumo:
Autor proof
Resumo:
This paper presents the conversion process of a traditional Internal Combustion Engine vehicle into an Electric Vehicle. The main constitutive elements of the Electric Vehicle are presented. The developed powertrain uses a three-phase inverter with Field Oriented Control and space vector modulation. The developed on-board batteries charging system can operate in Grid-to-Vehicle and Vehicle-to-Grid modes. The implemented prototypes were tested, and experimental results are presented. The assembly of these prototypes in the vehicle was made in accordance with the Portuguese legislation about vehicles conversion, and the main adopted solutions are presented.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1.º do Ensino Básico
Resumo:
Relatório de estágio de mestrado em Ensino de Educação Física nos Ensinos Básico e Secundário
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This paper proposes a multifunctional converter to interface renewable energy sources (e.g., solar photovoltaic panels) and electric vehicles (EVs) with the power grid in smart grids context. This multifunctional converter allows deliver energy from the solar photovoltaic panels to an EV or to the power grid, and exchange energy in bidirectional mode between the EV and the power grid. Using this multifunctional converter are not required multiple conversion stages, as occurs with the traditional solutions, where are necessary two power converters to integrate the solar photovoltaic system in the power grid and also two power converters to integrate an off-board EV battery charger in the power grid (dc-dc and dc-ac power converters in both cases). Taking into account that the energy provided (or delivered) from the power grid in each moment is function of the EV operation mode and also of the energy produced from the solar photovoltaic system, it is possible to define operation strategies and control algorithms in order to increase the energy efficiency of the global system and to improve the power quality of the electrical system. The proposed multifunctional converter allows the operation in four distinct cases: (a) Transfer of energy from the solar photovoltaic system to the power grid; (b) Transfer of energy from the solar photovoltaic system and from the EV to the power grid; (c) Transfer of energy from the solar photovoltaic system to the EV or to the power grid; (d) Transfer of energy between the EV and the power grid. Along the paper are described the system architecture and the control algorithms, and are also presented some computational simulation results for the four aforementioned cases. It is also presented a comparative analysis between the traditional and the proposed solution in terms of operation efficiency and estimated cost of implementation.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents a novel architecture of a bidirectional bridgeless interleaved converter for battery chargers of electric vehicles (EVs). The proposed converter is composed by two power stages: an ac-dc converter that is used to interface the power grid and the dc-link, and a dc-dc converter that is used to interface the dc-link and the batteries. The ac-dc converter is an interleaved bridgeless bidirectional boost-type converter and the dc-dc converter is a bidirectional buck-boost-type converter. The proposed converter works with sinusoidal grid current and with high power factor for all operating power levels, and in both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. In the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the principle of operation, the power control theory, and the current control strategy. Several simulation results for both G2V and V2G operation modes are presented.
Resumo:
This paper presents a novel concept of unidirectional bridgeless combined boost-buck converter for electric vehicles (EVs) battery chargers. The proposed converter is composed by two power stages: an ac-dc front-end converter used to interface the power grid and the dc-link, and a dc-dc back-end converter used to interface the dc-link and the batteries. The ac-dc converter is a bridgeless boost-type converter and the dc-dc converter is an interleaved buck-type converter. The proposed converter operates with sinusoidal grid current and unitary power factor for all operating power levels. Along the paper is described in detail the proposed converter for EV battery chargers: the circuit topology, the different stages describing the principle of operation, the power control theory, and the current control strategy, for both converters. Along the paper are presented several simulation results for a maximum power of 3.5 kW.
Resumo:
Relatório de estágio de mestrado em Ensino de Música
Resumo:
Programa Doutoral em Engenharia Têxtil.
Resumo:
Solar photovoltaic systems are an increasing option for electricity production, since they produce electrical energy from a clean renewable energy resource, and over the years, as a result of the research, their efficiency has been increasing. For the interface between the dc photovoltaic solar array and the ac electrical grid is necessary the use of an inverter (dc-ac converter), which should be optimized to extract the maximum power from the photovoltaic solar array. In this paper is presented a solution based on a current-source inverter (CSI) using continuous control set model predictive control (CCS-MPC). All the power circuits and respective control systems are described in detail along the paper and were tested and validated performing computer simulations. The paper shows the simulation results and are drawn several conclusions.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1º Ciclo do Ensino Básico