31 resultados para pacs: neural computing technologies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the impact of early adverse experience on neural processing of face familiarity has been studied, research has not taken into account disordered child behavior. This work compared the neural processing of familiar versus strangers' faces in 47 institutionalized children with a mean age of 54 months to determine the effects of (a) the presence versus absence of atypical social behavior and (b) inhibited versus indiscriminant atypical behavior. Results revealed a pattern of cortical hypoactivation in institutionalized children manifesting atypical social behavior and that inhibited children displayed larger neural response to a caregiver's face than to the stranger's, while indiscriminant children did not discriminate between stimuli. These findings suggest that neural correlates of face familiarity are associated with social functioning in institutionalized children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kidney renal failure means that one’s kidney have unexpectedlystoppedfunctioning,i.e.,oncechronicdiseaseis exposed, the presence or degree of kidney dysfunction and its progression must be assessed, and the underlying syndrome has to be diagnosed. Although the patient’s history and physical examination may denote good practice, some key information has to be obtained from valuation of the glomerular filtration rate, and the analysis of serum biomarkers. Indeed, chronic kidney sickness depicts anomalous kidney function and/or its makeup, i.e., there is evidence that treatment may avoid or delay its progression, either by reducing and prevent the development of some associated complications, namely hypertension, obesity, diabetes mellitus, and cardiovascular complications. Acute kidney injury appears abruptly, with a rapiddeteriorationoftherenalfunction,butisoftenreversible if it is recognized early and treated promptly. In both situations, i.e., acute kidney injury and chronic kidney disease, an early intervention can significantly improve the prognosis. The assessment of these pathologies is therefore mandatory, although it is hard to do it with traditional methodologies and existing tools for problem solving. Hence, in this work, we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures based on Logic Programming, that will allow onetoconsiderincomplete,unknown,and evencontradictory information, complemented with an approach to computing centered on Artificial Neural Networks, in order to weigh the Degree-of-Confidence that one has on such a happening. The present study involved 558 patients with an age average of 51.7 years and the chronic kidney disease was observed in 175 cases. The dataset comprise twenty four variables, grouped into five main categories. The proposed model showed a good performance in the diagnosis of chronic kidney disease, since the sensitivity and the specificity exhibited values range between 93.1 and 94.9 and 91.9–94.2 %, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parchment stands for a multifaceted material made from animal skin, which has been used for centuries as a writing support or as bookbinding. Due to the historic value of objects made of parchment, understanding their degradation and their condition is of utmost importance to archives, libraries and museums, i.e., the assessment of parchment degradation is mandatory, although it is hard to do with traditional methodologies and tools for problem solving. Hence, in this work we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate Parchment Degradation and the respective Degree-of-Confidence that one has on such a happening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are only a few treatments available for Tourette syndrome (TS). These treatments frequently do notwork in patients with moderate to severe TS [1]. Neuroimaging studies show a correlation between tics severity and increased activation over motor pathways, along with reduced activation over the control areas of the cortico-striato-thalamo-cortical circuits [2]. Moreover, the temporal pattern of tic generation suggests that cortical activation especially in the SMA precedes subcortical activation [3]. Following this assumption, here we explored the brain effects of 10-daily sessions of cathodal transcranial Direct Current Stimulation (tDCS) delivered over the pre-SMA in a patient with refractory and severe TS and also assessed whether those changes were long lasting (up to 6 months).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Estudos da Criança (Especialidade de Tecnologias de Informação e Comunicação)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Biomédica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doctoral Thesis in Information Systems and Technologies Area of Information Systems and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of ubiquitous computing (ubicomp) environments raises several challenges in terms of their evaluation. Ubicomp virtual reality prototyping tools enable users to experience the system to be developed and are of great help to face those challenges, as they support developers in assessing the consequences of a design decision in the early phases of development. Given the situated nature of ubicomp environments, a particular issue to consider is the level of realism provided by the prototypes. This work presents a case study where two ubicomp prototypes, featuring different levels of immersion (desktop-based versus CAVE-based), were developed and compared. The goal was to determine the cost/benefits relation of both solutions, which provided better user experience results, and whether or not simpler solutions provide the same user experience results as more elaborate one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Introduction: Thermal processing is probably the most important process in food industry that has been used since prehistoric times, when it was discovered that heat enhanced the palatability and the life of the heat-treated food. Thermal processing comprehends the heating of foods at a defined temperature for a certain length of time. However, in some foods, the high thermotolerance of certain enzymes and microorganisms, their physical properties (e.g.,highviscosity),ortheircomponents(e.g.,solidfractions) require the application of extreme heat treatments that not only are energy intensive, but also will adversely affect the nutritional and organoleptic properties of the food. Technologies such as ohmic heating, dielectric heating (which includes microwave heating and radiofrequency heating), inductive heating, and infrared heating are available to replace, or complement, the traditional heat-dependent technologies (heating through superheated steam, hot air, hot water, or other hot liquid, being the heating achieved either through direct contact with those agents – mostly superheated steam – or through contact with a hot surface which is in turn heated by such agents). Given that the “traditional” heatdependent technologies are thoroughly described in the literature, this text will be mainly devoted to the so-called “novel” thermal technologies. (...)