25 resultados para Via de administração dos corticóides
Resumo:
Tese de Doutoramento em Tecnologias e Sistemas de Informação
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
Dissertação de mestrado em Direito Tributário e Fiscal
Resumo:
Dissertação de mestrado em Direito das Autarquias Locais
Resumo:
A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Resumo:
Between 2008 and 2009 a preventive excavation supervised by the Unit of Archaeology of the University of Minho was conducted in an area with approximately 5000 square meters allowing the identification of a wide sector of the Via XVII necropolis, which is one of the five roman necropolises known to have existed in Bracara Augusta. The findings enabled us to define a typological framework related with incinerations, to understand the internal organization of the necropolis and recover the ritual marks of the funerary practices between the first century BC and the second century AD.
Resumo:
Dissertação de mestrado em Direito Administrativo
Resumo:
The present paper aims to analyse archaeological evidence associated with the Roman necropolis of Via XVII, in Braga, with a particular emphasis towards its late antiquity occupation and related with data emerging from the excavations conducted across two main different areas. We intend to reflect over the specific features of the fourth-seventh century’s funerary space of one of the most important necropolis of Bracara Augusta.
Resumo:
Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.