54 resultados para Numerical optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earthworks tasks are often regarded in transportation projects as some of the most demanding processes. In fact, sequential tasks such as excavation, transportation, spreading and compaction are strongly based on heavy mechanical equipment and repetitive processes, thus becoming as economically demanding as they are time-consuming. Moreover, actual construction requirements originate higher demands for productivity and safety in earthwork constructions. Given the percentual weight of costs and duration of earthworks in infrastructure construction, the optimal usage of every resource in these tasks is paramount. Considering the characteristics of an earthwork construction, it can be looked at as a production line based on resources (mechanical equipment) and dependency relations between sequential tasks, hence being susceptible to optimization. Up to the present, the steady development of Information Technology areas, such as databases, artificial intelligence and operations research, has resulted in the emergence of several technologies with potential application bearing that purpose in mind. Among these, modern optimization methods (also known as metaheuristics), such as evolutionary computation, have the potential to find high quality optimal solutions with a reasonable use of computational resources. In this context, this work describes an optimization algorithm for earthworks equipment allocation based on a modern optimization approach, which takes advantage of the concept that an earthwork construction can be regarded as a production line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highway construction, earthworks refer to the tasks of excavation, transportation, spreading and compaction of geomaterial (e.g. soil, rockfill and soil-rockfill mixture). Whereas relying heavily on machinery and repetitive processes, these tasks are highly susceptible to optimization. In this context Artificial Intelligent techniques, such as Data Mining and modern optimization can be applied for earthworks. A survey of these applications shows that they focus on the optimization of specific objectives and/or construction phases being possible to identify the capabilities and limitations of the analyzed techniques. Thus, according to the pinpointed drawbacks of these techniques, this paper describes a novel intelligent earthwork optimization system, capable of integrating DM, modern optimization and GIS technologies in order to optimize the earthwork processes throughout all phases of design and construction work. This integration system allows significant savings in time, cost and gas emissions contributing for a more sustainable construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering that vernacular architecture may bear important lessons on hazard mitigation and that well-constructed examples showing traditional seismic resistant features can present far less vulnerability than expected, this study aims at understanding the resisting mechanisms and seismic behavior of vernacular buildings through detailed finite element modeling and nonlinear static (pushover) analysis. This paper focuses specifically on a type of vernacular rammed earth constructions found in the Portuguese region of Alentejo. Several rammed earth constructions found in the region were selected and studied in terms of dimensions, architectural layout, structural solutions, construction materials and detailing and, as a result, a reference model was built, which intends to be a simplified representative example of these constructions, gathering the most common characteristics. Different parameters that may affect the seismic response of this type of vernacular constructions have been identified and a numerical parametric study was defined aiming at evaluating and quantifying their influence in the seismic behavior of this type of vernacular buildings. This paper is part of an ongoing research which includes the development of a simplified methodology for assessing the seismic vulnerability of vernacular buildings, based on vulnerability index evaluation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational in- telligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two il- lustrative Traffic Engineering methods are described, allowing to attain routing con- figurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of parts produced by Free Form Extrusion (FFE), an increasingly popular additive manufacturing technique, depends mainly on their dimensional accuracy, surface quality and mechanical performance. These attributes are strongly influenced by the evolution of the filament temperature and deformation during deposition and solidification. Consequently, the availability of adequate process modelling software would offer a powerful tool to support efficient process set-up and optimisation. This work examines the contribution to the overall heat transfer of various thermal phenomena developing during the manufacturing sequence, including convection and radiation with the environment, conduction with support and between adjacent filaments, radiation between adjacent filaments and convection with entrapped air. The magnitude of the mechanical deformation is also studied. Once this exercise is completed, it is possible to select the material properties, process variables and thermal phenomena that should be taken in for effective numerical modelling of FFE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we perform a comparison of two different numerical schemes for the solution of the time-fractional diffusion equation with variable diffusion coefficient and a nonlinear source term. The two methods are the implicit numerical scheme presented in [M.L. Morgado, M. Rebelo, Numerical approximation of distributed order reaction- diffusion equations, Journal of Computational and Applied Mathematics 275 (2015) 216-227] that is adapted to our type of equation, and a colocation method where Chebyshev polynomials are used to reduce the fractional differential equation to a system of ordinary differential equations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mixing process of complex composite materials is fundamental in several industrial processes. For instance, the dispersion of fillers in polymer melt matrices is commonly employed to manufacture polymer composites, using a twin-screw extruder. The effectiveness of the filler dispersion depends not only on the complex flow patterns generated, but also on the polymer melt rheological behavior. Therefore, the availability of a numerical tool able to predict mixing, taking into account both fluid and particles phases would be very useful to increase the process insight, and thus provide useful guidelines for its optimization. In this work, a new Eulerian-Lagrangian numerical solver is developed OpenFOAM® computational library, and used to better understand the mechanisms determining the dispersion of fillers in polymer matrices. Particular attention will be given to the effect of the rheological model used to represent the fluid behavior, on the level of dispersion obtained. For the Eulerian phase the averaged volume fraction governing equations (conservation of mass and linear momentum) are used to describe the fluid behavior. In the case of the Lagrangian phase, Newton’s second law of motion is used to compute the particles trajectories and velocity. To study the effect of fluid behavior on the filler dispersion, several systems are modeled considering different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to correlate the fluid and particle characteristics on the effectiveness of mixing and morphology obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In several industrial applications, highly complex behaviour materials are used together with intricate mixing processes, which difficult the achievement of the desired properties for the produced materials. This is the case of the well-known dispersion of nano-sized fillers in a melt polymer matrix, used to improve the nanocomposite mechanical and/or electrical properties. This mixing is usually performed in twin-screw extruders, that promote complex flow patterns, and, since an in loco analysis of the material evolution and mixing is difficult to perform, numerical tools can be very useful to predict the evolution and behaviour of the material. This work presents a numerical based study to improve the understanding of mixing processes. Initial numerical studies were performed with generalized Newtonian fluids, but, due to the null relaxation time that characterize this type of fluids, the assumption of viscoelastic behavior was required. Therefore, the polymer melt was rheologically characterized, and, a six mode Phan-Thien-Tanner and Giesekus models were used to fit the rheological data. These viscoelastic rheological models were used to model the process. The conclusions obtained in this work provide additional and useful data to correlate the type and intensity of the deformation history promoted to the polymer nanocomposite and the quality of the mixing obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Industrial e de Sistemas (PDEIS)