33 resultados para Fibres de lin
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
Magnetoelectric 0-1 composites comprising CoFe2O4 (CFO) nanoparticles in polyvinylidene fluoride (PVDF) polymerfibre matrix have been prepared by electrospinning. The average diameter of the electrospun composite fibres D is ~ 325 nm, independently of nanoparticle content, and the amount of crystalline polar β phase is strongly enhanced when compared to pure PVDF polymer fibres. The piezoelectric response of these electroactive nanofibres is modified by an applied magnetic field, thus evidencing the magnetoelectric character of the CFO/PVDF 0-1 composites.
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Electrospun poly(vinylidene fluoride) (PVDF) fiber mats find applications in an increasing number of areas, such as battery separators, filtration and detection membranes, due to their excellent properties. However, there are limitations due to the hydrophobic nature and low surface energy of PVDF. In this work, oxygen plasma treatment has been applied in order to modify the surface wettability of PVDF fiber mats and superhydrophilic PVDF electrospun membranes have been obtained. Further, plasma treatment does not significantly influences fiber average size (~400 ± 200 nm), morphology, electroactive -phase content (~80-85%) or the degree of crystallinity (Xc of 42 ± 2%), allowing to maintain the excellent physical-chemical characteristics of PVDF. Plasma treatment mainly induces surface chemistry modifications, such as the introduction of oxygen and release of fluorine atoms that significantly changes polymer membrane wettability by a reduction of the contact angle of the polymer fibers and an overall decrease of the surface tension of the membranes.
Resumo:
This paper provides an overview of properties and application of natural fibre composites. Natural fibre market, merits and demerits, surface treatment techniques, properties of some recently developed natural fibre composites and applications have been discussed.
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica (área de conhecimento em Engenharia Enzimática e das Fermentações)
Resumo:
Identification of the tensile constitutive behaviour of Fibre Reinforced Concrete (FRC) represents an important aspect of the design of structural elements using this material. Although an important step has been made with the introduction of guidance for the design with regular FRC in the recently published fib Model Code 2010, a better understanding of the behaviour of this material is still necessary, mainly for that with self-compacting properties. This work presents an experimental investigation employing Steel Fibre Self-Compacting Concrete (SFRSCC) to cast thin structural elements. A new test method is proposed for assessing the post-cracking behaviour and the results obtained with the proposed test method are compared with the ones resulted from the standard three-point bending tests (3PBT). Specimens extracted from a sandwich panel consisting of SFRSCC layers are also tested. The mechanical properties of SFRSCC are correlated to the fibre distribution by analysing the results obtained with the different tests. Finally, the stress-crack width constitutive law proposed by the fib Model Code 2010 is analysed in light of the experimental results.
Resumo:
Dissertação de mestrado em Estatística
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
In the last few years, many reports have been describing promising biocompatible and biodegradable materials that can mimic in a certain extent the multidimensional hierarchical structure of bone, while are also capable of releasing bioactive agents or drugs in a controlled manner. Despite these great advances, new developments in the design and fabrication technologies are required to address the need to engineer suitable biomimetic materials in order tune cells functions, i.e. enhance cell-biomaterial interactions, and promote cell adhesion, proliferation, and differentiation ability. Scaffolds, hydrogels, fibres and composite materials are the most commonly used as biomimetics for bone tissue engineering. Dynamic systems such as bioreactors have also been attracting great deal of attention as it allows developing a wide range of novel in vitro strategies for the homogeneous coating of scaffolds and prosthesis with ceramics, and production of biomimetic constructs, prior its implantation in the body. Herein, it is overviewed the biomimetic strategies for bone tissue engineering, recent developments and future trends. Conventional and more recent processing methodologies are also described.
Resumo:
Degree of Doctor of Philosophy of Structural/Civil Engineering
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)