11 resultados para Lower Saxony
em Institutional Repository of Leibniz University Hannover
Resumo:
The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological (= impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021-2050 compared to 1971-2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078-2087. The projected phenophases advanced by 5.5 d K-1, showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day.
Resumo:
Digital data from various scientific fields is stored in separate information systems („FIS geology“, „FIS pedology“, etc.) in the Lower Saxony Geo-Information System NIBIS so that it can be processed and interpreted; this is necessary to meet increasing demand for soil-relevant information for decision-making and planning purposes. The necessary work will be considerably accelerated and its quality improved by setting up and actually using such a tool. A detailed account is given of the Lower Saxony Geo-Information System NIBIS, in particular how the data base is set up and how the NIBIS is used in cases where concrete problems occured.
Resumo:
The Late Glacial and Holocene landscape development in the vicinity of the River Elbe near Neuhaus, Lower Saxony, was studied during geological mapping of the area. The geological and geobotanical methods used in these investigations were chosen to cope with the difficulties which arise during research on Quaternary flood plains in low country. Paleochannel fill and areas of flood-plain sediments were drilled, the lithology examined, and the sediments dated on the basis of their pollen content. No evidence was found for the existence before the Middle Ages of paleo- channels the size of the present River Elbe. Before the first measures were made to regulate the Elbe River, it was an anastomosing river system with numerous small branches. The lower parts of the flood-plain profiles are predominantly sand and the upper parts silty-clayey loam. With the construction of effective levees over the last several centuries, the flow velocity of the Elbe has increased considerably during high water periods and instead of the deposition of meadow loam, sand was deposited as natural levees. The main belt of sand dunes on the east bank of the Elbe overlies Preboreal to Boreal lake mud and is, therefore, of Holocene age.
Resumo:
The hydrodynamics and hydrochemistry of salt and fresh water from solid rock aquifer systems in the Pyrmont area are described and interpreted on the basis of recent investigations including geoelectrics, isotope hydrology, soil air analysis. Theories on the source of the springs in this area are developed, which explain the different compositions of the springs and make it possible to protect them. Data from new and re-interpretated drill holes, borehole logs and outcrops suggest a revision of the geological structure of the Pyrmont dome. Bad Pyrmont is situated on a wide dome of Triassic rocks in the southern part of the Lower Saxony uplands. Inversion of the relief has caused the development of an erosional basin surrounded by prominent ridges. Deep faults developed at the crest of the dome as this part of the structure was subjected to the strongest tectonic stress. Subrosion of the Zechstein salts in the western part of the dome has caused the main salt bed to wedge out below the western part of the dome along a N-S striking structure; this structure is refered to as the „Salzhang“ (salt slope). West of the „Salzhang“, where subrosion has removed the salt bed that prevents gas rising from below, carbon dioxide of deep volcanic origin can now rise to the surface. Hydraulic cross sections illustrate the presence of extensive and deep-seated groundwater flow within the entire Pyrmont dome. While groundwater flow is directed vertically downwards in the ridges surrounding the dome, centripetal horizontal flow predominates the intermediate area. In the central part of the dome, groundwater rises to join the River Emmer, which is the main receiving water course in the central part of the eroded basin. The depth of the saltwater/freshwater interface is determinated by the weight of the superimposed freshwater body. Hydrochemical cross sections show the shape and position of the interface and document a certain degree of hydrochemical zonation of the gently mineralized fresh water. Genetic relationships between the two main water types and the hydrochemical zones of the freshwater body are discussed. The knowledge of the hydrogeological relationship in the Bad Pyrmont aquifer systems permits a spatially narrow coexistence of wells withdrawing groundwater for different purposes (medicinal, mineral, drinking and industrial water).
Resumo:
The Hainholz quarry in the Osterwald hills of NW-Germany is the most impressive outcrop in the Lower Saxony Basin exposing Late Jurassic (Korallenoolith, Oxfordian) coral buildups. The Korallenoolith deposits in the quarry commence with a oolitic sequence about 20 m thick which is limited by a distinctive hardground at its top. This sequence is overlain by the so called “Obere Korallenbank”-Member about 13 m in thickness which is mainly build up by coral reef complexes. Throughout a lateral extend of about 400 m exposed in the quarry, the Obere Korallenbank Member shows numerous pillar-shaped reefal build ups which are flanked by a reefal debris limestone. The coral fauna of the in situ reefal bioconstructions comprises not less than 37 taxa most of which have been described from the Lower Saxony Basin for the first time. Probably, the pillar-shaped reefs formed a small positive relief of only a few dm against the debris deposits during deposition. The interreef debris limestones in the lower and middle part of the Obere Korallenbank Member show three intercalated biostromal coral layers. In the upper part of the member, the interreef facies is represented by a mikritic peloidal limestone rich in sponge remains and, unusual in such a depositional environment, ammonites (Dichotomo-sphinctes bifurcatoides, D. sp.). Additionaly, at the top of of the peloidal limestone a layer enriched in nerineids and other gastropods limits the reefal constructions of the Obere Korallenbank Member against the overlying “humeralis-Oolith” sequence. On the basis of the facies development of this depositional sequence the reef formation in relation to sealevel changes is discussed.
Resumo:
An overview is given here on the palaeobiogeography of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) in NW Germany (Lower Saxony Basin). Based on microfacies observations, abundant faunal and floral elements of the tropical tethyan realm are recognized in shallow-marine calcareous sediments of the Korallenoolith Formation. Foraminiferal fauna is both highly diverse and abundant and mostly of mediterranean character. Also, there is a small flora recorded, which includes heavily calcified red algae, aragonitic green algae, and cayeuxiid algae. They display restricted diversity when compared to those of shallow-marine tropical tethyan seas. Chaetetids and diceratids are locally abundant. Lithocodium aggregatum and Bacinella irregularis have been observed in Late Jurassic palaeolatitudes north of the Tethys for the first time. Corals are present in numerous genera and species. Their occurrence is restricted to a few horizons of the Korallenoolith Formation where they build patch reefs, coral biostroms and coral meadows. The overall character of the coral-thrombolite-reefs (florigemma-Bank Member) is very similar to those of the Tethys. The presence of these marine tethyan taxa assigned the position of the Lower Saxony Basin during middle Oxfordian to early Kimmeridgian palaeobiogeographically into the submediterranean province and reflects northward migration of tropical tethyan fauna and flora which reach in the Lower Saxony Basin their northern limit. These biota seem to be biogeo-graphically transitional between communities present in England and the Tethys.
Resumo:
An outcrop of Late Jurassic (Kimmeridgian) age in Lower Saxony (NW Germany) has yielded small teeth probably of crocodilian origin. The dental morphology is still unknown among crocodiles and indicates a durophagous habit. The teeth are provisionally referred to as Metasuchia fam., gen. et sp. indet.
Resumo:
The feldspar contents of 373 samples from quaternary sands of Lower Saxony (West Germany) were determined. The samples were taken in all parts of Lower Saxony and represent a selec- tion of quaternary Sediments of different age and genetic origin. 7 different methods of investigation were tested to determine the content of feldspar both qualitative and quantitative. Polarizing mioroscopy, x-ray diffractometry, Chemical analysis and staining fit these aims best. The most important results of these investigations are: - The quarternary Lower Saxonian sands have an average content of 4.4 weight-% potassium feldspars and 0.8 weight-% plagio- clase. - All tested samples have a similar qualitative feldspar compo- sition. There are monocline, tricline and - more rare - per- thitic potassium feldspars with a rather high (greater 80 %) KAlSi3O8 content. From the plagioclase feldspars only albite, oligoclase and little andesine were indicated. - The potassium feldspar content is higher in each sample than the plagioclase content. - The feldspar content depends on age and genetic origin of each sand. Generally spoken the feldspar content lessens with increasing age. Glaciofluviatile and basin sands usually have a higher feldspar content than fluvial or aeolian sands of the same age. - The feldspar content is highly influenced by grain size com- position. A minimum of feldspar content lies between 0.4 and 1 .0 mm grain size. Fine sands usually have a higher feldspar content than coarse sands. The reason for this phenomenon is weathering. - There are no regional differences in the amount of feldspar content. - The feldspar content is not high enough for commercial mining.
Resumo:
A total of 117 samples of quarternary sediments, mostly sands, from a region NW of Hannover (Lower Saxony) has been investigated with regard to their content of heavy minerals. The absolute percentage of transparent heavy minerals approximates 0.2 Vol.%. If several samples of glaciofluvial sands (Drenthe-stage) or dune sands (Late Weichsel-stage to Holocene) are taken from one outcrop they show great similarities in their heavy minerals contents. Glaciofluvial sands of the Elster-stage evidently have less Garnet, Hornblende and minerals of volcanic origin (Augite, partly also Orthopyroxenes, Oxyhornblende and Olivine) than those of the Drenthe-stage, Weichsel-stage, and the Holocene. All these groups hold nearly the same average assemblages of heavy mineral, thus indicating that within the Drenthe-stage or later material from north and from south has been mixed and/or reworked. In the area investigated the proportions of heavy minerals do not help to identify either the stratigraphic position or the way of deposition of different sandy sediments younger than the Elster-stage. The distributional pattern of several heavy minerals point out that Kyanite, Hornblende and Epidote have been transported predominantly from the north, whereas Garnet and Staurolite have sources both in the north and the south. Tourmaline, Apatite and the minerals of volcanic origin mainly must be derived from the south. All results obtained in the region examined should not be transferred to other zones of the lowlands of Northern Germany automatically.
Resumo:
During the Sedimentation of the platform carbonate deposits of the Korallenoolith Formation (middle Oxfordian to early Kimmeridgian) small buildups ofcorals formed in the Lower Saxony Basin. These bioconstructions are restricted to particular horizons (Untere Korallenbank,ßorigenuna-Bank Member etc.) and represent patch reefs and biostromes. In this study, the development of facies, fossil assemblages, spatial distribution of fossils, and reefs of the ßorigenuna-Bank Member (upper Middle Oxfordian) in the Süntel Mts and the eastern Wesergebirge Mts is described; the formation of reefs is discussed in detail. Twelve facies types are described and interpreted. They vary between high-energy deposits as well winnowed oolites and quiet-water lagoonal mudstones. Owing to the significance of biota, micro- and macrofossils are systematically described. The reefs are preserved in growth position, are characterized by numerous corresponding features and belong to a certain reef type. According to their size, shape and framework, they represent patch reefs, coral knobs (sensu James, 1983), coral thrombolite reefs (sensu Leinfelder et al., 1994) or “Klein- and Mitteldickichte” (sensu Laternser, 2001). Their growth fabric corresponds to the superstratal (dense) pillarstone (sensu Insalaco, 1998). As the top of the ßorigenuna-Bank displays an erosional unconformity (so-called Hauptdiskontinuität), the top of the reefs are erosionally capped. Their maximum height amounts to at least the maximum thickness of the ßorigenuna-Bank which does not exceed 4 metres. The diversity of coral fauna of the reefs is relatively low; a total of 13 species is recorded. The coral community is over- whelmingly dominated by the thin-branched ramose Thamnasteria dendroidea (Lamouroux) that forms aggregations of colonies (77?. dendroidea thickets). Leafy to platy Fungiastrea arachnoides (Parkinson) and Thamnasteria concinna (Goldfuss) occur subordinately, other species are only of minor importance. In a few cases, the reef-core consisting of Th. dendroidea thickets is laterally encrusted by platy F. arachnoides and Th. concinna colonies, and microbial carbonates. This zonation reflects probably a succession of different reef builders as a result of changing environmental conditions (allogenic succession). Moreover, some reefs are overlain by a biostrome made of large Solenopora jurassica nodules passing laterally in a nerinean bed. Mikrobial carbonates promoted reef growth and favoured the preservation of reef organismn in their growth position or in situ. They exhibit a platy, dendroid, or reticulate growth form or occur as downward-facing hemispheroids. According to their microstructure, they consist of a peloidal, clotted, or unstructured fabric (predominately layered and poorly structured thrombolite as well as clotted leiolite) (sensu Schmid, 1996). Abundant endo- and epibiontic organisms (bivalves, gastropods, echinoids, asteroids, ophiuroids, crabs etc) are linked to the reefs. With regard to their guild structure, the reefs represent occurrences at which only a few coral species serve as builder. Moreover, microbial carbonates contribute to both building and binding of the reefs. Additional binder as well as baffler are present, but not abundant. According to the species diversity, the dweller guild comprises by far the highest number of invertebrate taxa. The destroyer guild chiefly encompasses bivalves. The composition of the reef community was influenced by the habitat structure of the Th. dendroidea thickets. Owing to the increase in encrusting organisms and other inhabitants of the thickets, the locational factors changed, since light intensity and hydrodynamic energy level and combined parameters as oxygen supply declined in the crowded habitat. Therefore a characteristic succession of organisms is developed that depends on and responds to changing environmental conditions („community replacement sequence“). The succession allows the differentiation of different stages. It started after the cessation of the polyps with boring organisms and photoautotrophic micro-encrusters (calcareous algae, Lithocodium aggregatum). Following the death of these pioneer organisms, encrusting and adherent organisms (serpulids, „Terebella“ species, bryozoans, foraminifers, thecideidinids, sklerospongid and pharetronid sponges, terebratulids), small mobile organisms (limpets), and microbial induced carbonates developed. The final stage in the community replacement sequence gave rise to small cryptic habitats and organisms that belong to these caves (cryptobionts, coelobites). The habitat conditions especially favoured small non-rigid demosponges (“soft sponges”) that tolerate reduced water circulation. Reef rubble is negligible, so that the reefs are bordered by fossiliferous micritic limestone passing laterally in micritic limestone. Approximately 10% of the study area (outcropping florigemma-Bank) corresponds to reefal deposits whereas the remaining 90% encompass lagoonal inter-reefal deposits. The reef development is a good example for the interaction between reef growth, facies development and sea-level changes. It was initiated by a sea-level rise (transgression) and corresponding decrease in the hydrodynamic energy level. Colonization and reef growth took place on a coarse-grained Substrate composed of oncoids, larger foraminifers and bioclasts. Reef growth took place in a calm marine lagoonal setting. Increasing abundance of spherical coral morphs towards the Northeast (section Kessiehausen, northwestem Süntel Mts) reflects higher turbidity and a facies transition to coral occurrences of the ßorigenuna-Bank Member in the adjacent Deister Mts. The reef growth was neither influenced by stonns nor by input of siliciclastic deposits, and took place in short time - probably in only a thousand years under most probably mesotrophic conditions. The mass appearance of solenoporids and nerineids in the upper part of the ßorigenuna-Bank Member point to enhanced nutrient level as a result of regression. In addition, this scenario of fluctuations in nutrient availability seems to be responsible for the cessation of reef corals. The sea level fall reached its climax in the subaerial exposure and palaeokarst development of the florigemma-Bank. The reef building corals are typical pioneer species. The blade-like, flattened F. amchnoides colonies are characterized by their light porous calcium carbonate skeleton, which is a distinct advantage in soft bottom environment. Thus, they settled on soft bottom exposing the large parts of its surface to the incoming light. On the other hand, in response to their light requirements they were also able to settle shaded canopy structures or reef caves. Th. dendroidea is an opportunistic coral species in very shallow, well illuminated marine environment. Their thin and densely spaced branches led to a very high surface/volume ratio of the colonies that were capable to exploit incoming light due to their small thamasterioid calices characterized by “highly integrated polyps”. In addition, sideward coalescence of branches during colony growth led to a wave-resistant framework and favoured the authochthonous preservation of the reefs. Asexual reproduction by fragmented colonies promoted reef development as Th. dendroidea thickets laterally extend over the sea floor or new reefs have developed from broken fragments of parent colonies. Similar build ups with Th. dendroidea as a dominant or frequent reef building coral species are known from the Paris Basin and elsewhere from the Lower Saxony Basin (Kleiner Deister Mts). These buildups developed in well-illuminated shallow water and encompass coral reefs or coral thrombolite reefs. Intra- and inter-reef deposits vary between well-winnowed reef debris limestone and mudstones representing considerably calmer conditions. Solenoporid, nerineids and diceratides belong to the characteristic fossils of these occurrences. However, diceratides are missing in theflorigemma-Bank Member. Th. dendroidea differs in its colonization of low- to high-energy environment from recent ramose scleractinian corals (e.g., Acropora and Porites sp.). The latter are restricted to agitated water habitats creating coral thickets and carpets. According to the morphologic plasticity of Th. dendroidea, thick-branched colonies developed in a milieu of high water energy, whereas fragile, wide- and thin-branched colonies prevail in low-energy settings. Due to its relatively rapid growth, Th. dendroidea was able to keep pace with increased Sedimentation rates. 68 benthonic foraminiferan species/taxa have been recognized in thin sections. Agglutinated foraminifers (textulariids) predominate when compared with rotaliids and milioliids. Numerous species are restricted to a certain facies type or occur in higher population densities, in particular Everticyclammina sp., a larger agglutinated foraminifer that occurs in rock building amounts. Among the 25 reef dwelling foraminiferal species, a few were so far only known from Late Jurassic sponge reefs. Another striking feature is the frequency of adherent foraminiferal species. Fauna and flora, in particular dasycladaleans and agglutinated foraminifers, document palaeobiogeographic relationships to the Tethys and point to (sub)tropical conditions. Moreover, in Germany this foraminiferan assemblage is yet uncompared. In Southern Germany similar tethyan type assemblages are not present in strata as young as Middle Tithonian.
Resumo:
Die Gesteine des bearbeiteten Aufschlusses, dem Naturdenkmal "Saurierfährten Münchehagen" bei Münchehagen (Rehburger Berge), liegen stratigraphisch in der Bückeberg-Formation des Berrias (Wealden). Aufgeschlossen ist der Hauptsandstein (Wealden 3) . Es werden die Sedimenttexturen der Sohlbankfläche des ehemaligen Steinbruchs analysiert und interpretiert. Vorherrschende Schichtungstypen sind Wellenrippelschichtung und Flaserschichtung. Die Sedimente sind stark bioturbat. Auf mehreren freiliegenden Flächenniveaus der Sohlbank sind Rip- pelmarken zu beobachten, die systematisch vermessen wurden. Danach handelt es sich uro Wellenrippeln und untergeordnet um strömungsüberformte Wellenrippeln durch ablaufendes Wasser. Zahlreiche Merkmale zeigen wiederholtes Auftauchen und Trok- kenfallen an. Tonlagen kennzeichnen zeitweilige Stillwasserbedingungen. Ein ehemals verzweigtes Rinnensystem ist in Relikten erhalten und beweist ebenfalls einen wechselnden Wasserstand (ablaufendes Wasser). Sporadisch kam es im Zuge hochenergetischer Ereignisse zu einem schichtflutartigen Abfließen des Wassers. Eine reiche Ichnofauna ist zu beobachten. Wenige Spurentypen sind vorhanden, die Spurendichte ist jedoch sehr hoch. Es dominieren horizontale oder wenig geneigte Gestaltungswühlgefüge, vertikale Bauten kommen nur untergeordnet vor. Als häufigste Spurentypen treten Thalassinoides, Muensteria, Plano- lites und Pelecypodichnus auf. Die Größe der Ichnofossilien ist meist gering. Die Spuren bilden eine Ichnocoenose aus Ichnofossilien der Cruziana- und untergeordnet der Skolithos- Fazies. Bivalven belegen Brackwasser-Verhältnisse. Dies alles sind Merkmale eines lagunären Ablagerungsraumes, gelegen am Rand eines gezeitenarmen bzw. -losen Nebenmeeres (Niedersächsisches Becken) im Übergang von der fluviatilen in die litorale Fazies im rückwärtigen Bereich eines Barrierensystems. Wahrscheinlich spielte Wind eine entscheidende Rolle als Ursache für Wasserspiegelschwankungen. Die maximale Wassertiefe bei auflandigem Sturm hat vermutlich nicht mehr als 3 - 4 m betragen. Sonst war sie wahrscheinlich deutlich geringer und ermöglichte Dinosauriern ein Durchwaten des Gewässers, wie Fährten auf der Sohlfläche beweisen.