79 resultados para ultra-low pressure
em Indian Institute of Science - Bangalore - Índia
Resumo:
$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.
Resumo:
0:- ions have been detected and measured in a positive column of glow discharge in oxygen between 0.04 and 0.17 Torr. A suitable ion-molecule reaction has been proposed, which appears to be supported by the mass spectrometer measurements.
Resumo:
By modifying the electrodeposition technique, we have stabilized the silver nanowires (AgNWs) in high-energy hexagonal closed packed (hcp)structure. The conductivity noise measurements show that the noise magnitude in hcp silver nanowires is several orders of magnitude smaller than that of face centered cubic (fcc) silver nanowires, which is obtained by standard over potential lectrodeposition (OPD)technique. The reduction of noise can be attributed to the restricted dislocation dynamics in hcp AgNWs due to the presence of less number of slip systems. Temperature dependent noise measurements show that the noise magnitude in hcp AgNWs is weakly temperature dependent while in fcc AgNWs it is strong function of temperature.
Resumo:
Tyrosine aminotransferase activity in the liver increased about fourfold after 9h, on exposure of rats to stress of low pressure. 2. The phenylalanine hydroxylase activity increased about 60% on exposure for 24h or more. 3. An environmental pressure decrease of about 0.033 MN/m2 is needed to increase the activity of tyrosine aminotransferase. 4. Adrenalectomy completely abolished the increase in activity of tyrosine aminotransferase obtained on exposure to low pressure. 5. Treatment with cycloheximide or actinomycin D prevented the increase in activity of tyrosine aminotransferase. 6. Treatment with cycloheximide at the early part of exposure to stress prevented the increase in activity of phenylalanine hydroxylase obtained after 24h.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.
Resumo:
A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
We report the characterization of carbonaceous aluminium oxide, Al2O3:C, films grown on Si(100) by metalorganic chemical vapor deposition. The focus is on the study of the effects of carbon on the dielectric properties of aluminium oxide in a qualitative manner. The carbon present in the aluminium oxide film derives from aluminium acetylacetonate used as the source of aluminium. As-grown films comprise nanometer-sized grains of alumina (∼ 20–50 nm) in an amorphous carbonaceous matrix, as examined by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The films are shiny; they are smooth as observed by scanning electron microscopy (SEM). An attempt has been made to explore the defects (viz., oxide charge density) in the aluminium oxide films using room temperature high frequency capacitance – voltage (C-V) and current–voltage (I-V) measurements. The hysteresis and stretch-out in the high frequency C-V plots is indicative of charge trapping. The role of heteroatoms, as characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy, in the transport of charge in Al2O3:C films is discussed.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.
Resumo:
Homogeneous composite thin films of Fe2O3-carbon nanotube were synthesized in a novel, single-step process by metalorganic chemical vapor deposition (MOCVD) using ferric acetyl acetonate as precursor. The deposition of composite takes place in a narrow range of CVD conditions, beyond which the deposition either multiwall carbon nanotubes (MWNTs) only or hematite (α-Fe2O3) only takes place. The composite film formed on stainless steel substrates were tested for their supercapacitive properties in various aqueous electrolytes.
Resumo:
Communication applications are usually delay restricted, especially for the instance of musicians playing over the Internet. This requires a one-way delay of maximum 25 msec and also a high audio quality is desired at feasible bit rates. The ultra low delay (ULD) audio coding structure is well suited to this application and we investigate further the application of multistage vector quantization (MSVQ) to reach a bit rate range below 64 Kb/s, in a scalable manner. Results at 32 Kb/s and 64 Kb/s show that the trained codebook MSVQ performs best, better than KLT normalization followed by a simulated Gaussian MSVQ or simulated Gaussian MSVQ alone. The results also show that there is only a weak dependence on the training data, and that we indeed converge to the perceptual quality of our previous ULD coder at 64 Kb/s.
Resumo:
Structural and electrical properties of Eu2O3 films grown on Si(100) in 500–600 °C temperature range by low pressure metalorganic chemical vapor deposition are reported. As-grown films also possess the impurity Eu1−xO phase, which has been removed upon annealing in O2 ambient. Film’s morphology comprises uniform spherical mounds (40–60 nm). Electrical properties of the films, as examined by capacitance-voltage measurements, exhibit fixed oxide charges in the range of −1.5×1011 to −6.0×1010 cm−2 and dielectric constant in the range of 8–23. Annealing has resulted in drastic improvement of their electrical properties. Effect of oxygen nonstoichiometry on the film’s property is briefly discussed.
Resumo:
In this paper, a comparative study of thin films of Er2O3 and Gd2O3 grown on n-type Si(100) by low-pressure metalorganic chemical vapour deposition (MOCVD) under the identical conditions has been presented. beta-Diketonate complex of rate earth metals was used as precursor. Description on the evolution of the morphology, structure, optical, and electrical characteristics of films with respect to growth parameters and post-deposition annealing process has been presented. As-gown Gd2O3 films grow with <111> texture, whereas the texture of Er2O3 films strongly depends on the growth temperature (either <100> or <111>). Compositional analysis reveals that the Gd2O3 films grown at or above 500degreesC are carbon free whereas Er2O3 films at upto 525degreesC show the presence of heteroatoms and Er2O3 films grown above 525degreesC are carbon five. The effective dielectric constant is in the range of 7-24, while the fixed charge density is in the range - 10(11) to 10(10) CM-2 as extracted from the C-V characteristics. DC I-V study was carried out to examine the leakage behaviour of films. It reveals that the as-grown Gd2O3 film was very leakey in nature. Annealing of the films in oxidizing ambient for a period of 20 min results in a drastic improvement in the leakage behaviour. The presence of heteroatoms (such as carbon) and their effect on the properties of films are discussed.