11 resultados para incretin mimetics
em Indian Institute of Science - Bangalore - Índia
Resumo:
A catalytic reduction of graphene oxide (GO) by glutathione peroxidase (GPx) mimics is reported. This study reveals that GO contains peroxide functionalities, in addition to the epoxy, hydroxyl and carboxylic acid groups that have been identified earlier. It also is shown that GO acts as a peroxide substrate in the GPx-like catalytic activity of organoselenium/tellurium compounds. The reaction of tellurol, generated from the corresponding ditelluride, reduces GO through the glutathione (GSH)-mediated cleavage of the peroxide linkage. The mechanism of GO reduction by the tellurol in the presence of GSH involves the formation of a tellurenic acid and tellurenyl sulfide intermediates. Interestingly, the GPx mimics also catalyze the decarboxylation of the carboxylic acid functionality in GO at ambient conditions. Whereas the selenium/tellurium-mediated catalytic reduction/decarboxylation of GO may find applications in bioremediation processes, this study suggests that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO.
Resumo:
Novel isoselenazoles with high glutathione peroxidase (GPx) and peroxiredoxin (Prx) activities provide remarkable cytoprotection to human cells, mainly by exhibiting antioxidant activities in the presence of cellular thiols. The cytotoxicity of the isoselenazoles is found to be significantly lower than that of ebselen, which is being clinically evaluated by several groups for the treatment of reperfusion injuries and stroke, hearing loss, and bipolar disorder. The compounds reported in this paper have the potential to be used as therapeutic agents for disorders mediated by reactive oxygen species.
Resumo:
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Resumo:
Synthetic amphiphiles have been employed for the investigation of diverse topics, e.g. membrane mimetics, drug delivery, ion sensing and even in certain separation processes. Metal-complexing amphiphiles comprise an interesting class of compounds possessing multiple utilities. Upon solubilization in water they form metallomicelles. For achieving specific catalysis of a variety of reactions, metallomicelles were utilized by applying the principles of coordination chemistry and self-organizing systems. Because of their certain similarities with the natural enzymes, metallomicelles were synthesized as catalysts for many reactions. In particular the metallomicelles play a catalytic role in reactions involving the hydrolysis of activated carboxylate esters, phosphate esters and amides at ambient conditions near neutral pH. Apart from the hydrolysis reactions, these were exploited to play pertinent role as Lewis acid catalysts in cycloaddition reactions, and in other reactions such as phenolic oxidation in presence of hydrogen peroxide. In this review we emphasize with the help of assorted examples, the design, synthesis of metal-complexing amphiphiles and their aggregation behavior leading to catalytic hydrolysis reactions in aqueous media.
Resumo:
he crystal structure of 12 peptides containing the conformationally constrained 1-(aminomethyl)cyclohexaneacetic acid, gabapentin (Gpn), are reported. In all the 39 Gpn residues conformationally characterized so far, the torsion angles about the C-alpha-C-beta and C-beta-C-gamma bonds are restricted to the gauche conformation (+/- 60 degrees). The Gpn residue is constrained to adopt folded conformations resulting in the formation of intramolecularly hydrogen-bonded structures even in short peptides. The peptides Boc-Ac(6)c-Gpn-OMe 1 and Boc-Gpn-Aib-Gpn-Aib-OMe 2 provide examples of C-7 conformation; peptides Boc-Gpn-Aib-OH 3, Boc-Ac(6)c-Gpn-OH 4, Boc-Val-Pro-Gpn-OH 5, Piv-Pro-Gpn-Val-OMe 6, and Boc-Gpn-Gpn-Leu-OMe 7 provide examples of C-9 conformation; peptide Boc-Ala-Aib-Gpn-Aib-Ala-OMe 8 provides an example of C-12 conformation and peptides Boc-beta Leu-Gpn-Val-OMe 9 and Boc-beta Phe-Gpn-Phe-OMe 10 provide examples of C-13 conformation. Gpn peptides provide examples of backbone expanded mimetics for canonical alpha-peptide turns like the gamma (C-7) and the beta (C-10) turns. The hybrid beta gamma sequences provide an example of a mimetic of the C-13 alpha-turn formed by three contiguous alpha-amino acid residues. Two examples of folded tripeptide structures, Boc-Gpn-beta Phe-Leu-OMe 11 and Boc-Aib-Gpn-beta Phg-NHMe 12, lacking internal hydrogen bonds are also presented. An analysis of available Gpn residue conformations provides the basis for future design of folded hybrid peptides.
Resumo:
Seleno-organic glutathione peroxidase (GPx) mimetics, including ebselen (Eb), have been tested in in vitro studies for their ability to scavenge reactive oxygen and nitrogen species, including hydrogen peroxide and peroxynitrite. In this study, we investigated the efficacies of two Eb analogues, m-hydroxy ebselen (ME) and ethanol-ebselen (EtE) and compared these with Eb in cell based assays. We found that ME is superior in attenuating the activation of hydrogen peroxide-induced pro-inflammatory mediators, ERK and P38 in human aortic endothelial cells. Consequently, we investigated the effects of ME in an in vivo model of diabetes, the ApoE/GPx1 double knockout (dKO) mouse. We found that ME attenuates plaque formation in the aorta and lesion deposition within the aortic sinus of diabetic dKO mice. Oxidative stress as assessed by 8-OHdG in urine and nitrotyrosine immunostaining in the aortic sinus and kidney tubules, was reduced by ME in diabetic dKO mice. ME also attenuated diabetes-associated renal injury which included tubulointerstitial fibrosis and glomerulosclerosis. Furthermore, the bioactivity of the pro-fibrotic cytokine transforming growth factor-beta (TGF-beta) as assessed by phospho-Smad2/3 immunostaining was attenuated after treatment with ME. TGF-beta-stimulated increases in collagen I and IV gene expression and protein levels were attenuated by ME in rat kidney tubular cells. However, in contrast to the superior activity of ME in in vitro and cell based assays, ME did not further augment the attenuation of diabetes-associated atherosclerosis and renal injury in our in vivo model when compared with Eb. In conclusion, this study strengthens the notion that bolstering GPx-like activity using synthetic mimetics may be a useful therapeutic strategy in lessening the burden of diabetic complications. However, these studies highlight the importance of in vivo analyses to test the efficacies of novel Eb analogues, as in vitro and cell based assays are only partly predictive of the in vivo situation.
Resumo:
Iodothyronine deiodinases are selenoenzymes which regulate the thyroid hormone homeostasis by catalyzing the regioselective deiodination of thyroxine (T4). Synthetic deiodinase mimetics are important not only to understand the mechanism of enzyme catalysis, but also to develop therapeutic agents as abnormal thyroid hormone levels have implications in different diseases, such as hypoxia, myocardial infarction, critical illness, neuronal ischemia, tissue injury, and cancer. Described herein is that the replacement of sulfur/selenium atoms in a series of deiodinase mimetics by tellurium remarkably alters the reactivity as well as regioselectivity toward T4. The tellurium compounds reported in this paper represent the first examples of deiodinase mimetics which mediate sequential deiodination of T4 to produce all the hormone derivatives including T0 under physiologically relevant conditions.
Resumo:
Reactive oxygen species (ROS)-mediated diseased states are of major concern in modern day life. Under oxidative stress conditions, the cellular antioxidants deplete, leading to several biological disorders. Small molecule mimics of different antioxidant enzymes are found to be useful in supplementing the biological systems to detoxify ROS. In this study, we have synthesized a series of amine or amide-based diselenides containing an additional amino group as glutathione peroxidase (GPx) mimetics. These diselenides act as a catalytic triad model of the native GPx featuring two basic amino groups near the selenium centre. A comparison of the catalytic activities reveals that the additional amino group increases the activity significantly in the presence of aromatic thiols. Deprotonation of thiol by an additional amine either stabilizes the selenolate intermediate or facilitates the nucleophilic attack of thiol in other intermediates. The Se-77 NMR experiments and DFT calculations show that the amino group does not have any significant effect on the catalytic intermediates. Although the amino moiety increases the nucleophilicity of the thiol, it does not prevent the thiol exchange reactions that take place in the selenenyl sulfide intermediates.
Resumo:
Nanomaterials-based enzyme mimetics (nanozymes) have attracted considerable interest due to their applications in imaging, diagnostics, and therapeutic treatments. Particularly, metal-oxide nanozymes have been shown to mimic the interesting redox properties and biological activities of metalloenzymes. Here we describe an efficient synthesis of MnFe2O4 nanomaterials and show how the morphology can be controlled by using a simple co-precipitation method. The nanomaterials prepared by this method exhibit a remarkable oxidase-like activity. Interestingly, the activity is morphology-dependent, with nanooctahedra (NOh) exhibiting a catalytic efficiency of 2.21 x 10(9) M-1 s(-1), the highest activity ever reported for a nanozyme.
Resumo:
Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.
Resumo:
Organophosphorus-based nerve agents, such as paraoxon, parathion, and malathion, inhibit acetylcholinesterase, which results in paralysis, respiratory failure, and death. Bacteria are known to use the enzyme phosphotriesterase (PTE) to break down these compounds. In this work, we designed vacancy-engineered nanoceria (VE CeO2 NPs) as PTE mimetic hotspots for the rapid degradation of nerve agents. We observed that the hydrolytic effect of the nano-material is due to the synergistic activity between both Ce3+ and Ce4+ ions located in the active site-like hotspots. Furthermore, the catalysis by nanoceria overcomes the product inhibition generally observed for PTE and small molecule-based PTE mimetics.