359 resultados para design technology

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a Double Gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body, thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi-classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A large part of today's multi-core chips is interconnect. Increasing communication complexity has made essential new strategies for interconnects, such as Network on Chip. Power dissipation in interconnects has become a substantial part of the total power dissipation. Techniques to reduce interconnect power have thus become a necessity. In this paper, we present a design methodology that gives values of bus width for interconnect links, frequency of operation for routers, in Network on Chip scenario that satisfy required throughput and dissipate minimal switching power. We develop closed form analytical expressions for the power dissipation, with bus width and frequency as variables and then use Lagrange multiplier method to arrive at the optimal values. We present a 4 port router in 90 nm technology library as case study. The results obtained from analysis are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the foremost design considerations in microelectronics miniaturization is the use of embedded passives which provide practical solution. In a typical circuit, over 80 percent of the electronic components are passives such as resistors, inductors, and capacitors that could take up to almost 50 percent of the entire printed circuit board area. By integrating passive components within the substrate instead of being on the surface, embedded passives reduce the system real estate, eliminate the need for discrete and assembly, enhance electrical performance and reliability, and potentially reduce the overall cost. Moreover, it is lead free. Even with these advantages, embedded passive technology is at a relatively immature stage and more characterization and optimization are needed for practical applications leading to its commercialization.This paper presents an entire process from design and fabrication to electrical characterization and reliability test of embedded passives on multilayered microvia organic substrate. Two test vehicles focusing on resistors and capacitors have been designed and fabricated. Embedded capacitors in this study are made with polymer/ceramic nanocomposite (BaTiO3) material to take advantage of low processing temperature of polymers and relatively high dielectric constant of ceramics and the values of these capacitors range from 50 pF to 1.5 nF with capacitance per area of approximately 1.5 nF/cm(2). Limited high frequency measurement of these capacitors was performed. Furthermore, reliability assessments of thermal shock and temperature humidity tests based on JEDEC standards were carried out. Resistors used in this work have been of three types: 1) carbon ink based polymer thick film (PTF), 2) resistor foils with known sheet resistivities which are laminated to printed wiring board (PWB) during a sequential build-up (SBU) process and 3) thin-film resistor plating by electroless method. Realization of embedded resistors on conventional board-level high-loss epoxy (similar to 0.015 at 1 GHz) and proposed low-loss BCB dielectric (similar to 0.0008 at > 40 GHz) has been explored in this study. Ni-P and Ni-W-P alloys were plated using conventional electroless plating, and NiCr and NiCrAlSi foils were used for the foil transfer process. For the first time, Benzocyclobutene (BCB) has been proposed as a board level dielectric for advanced System-on-Package (SOP) module primarily due to its attractive low-loss (for RF application) and thin film (for high density wiring) properties.Although embedded passives are more reliable by eliminating solder joint interconnects, they also introduce other concerns such as cracks, delamination and component instability. More layers may be needed to accommodate the embedded passives, and various materials within the substrate may cause significant thermo -mechanical stress due to coefficient of thermal expansion (CTE) mismatch. In this work, numerical models of embedded capacitors have been developed to qualitatively examine the effects of process conditions and electrical performance due to thermo-mechanical deformations.Also, a prototype working product with the board level design including features of embedded resistors and capacitors are underway. Preliminary results of these are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a hybrid solar cooking system where the solar energy is transported to the kitchen. The thermal energy source is used to supplement the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. Solar energy is transferred to the kitchen by means of a circulating fluid. Energy collected from sun is maximized by changing the flow rate dynamically. This paper proposes a concept of maximum power point tracking (MPPT) for the solar thermal collector. The diameter of the pipe is selected to optimize the overall energy transfer. Design and sizing of different components of the system are explained. Concept of MPPT is validated with simulation and experimental results. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes the implementation of wireless mesh nodes based on the IEEE 802.11s draft where the motivation is to build a real life mesh network. The mesh nodes developed have mesh, mesh access point and mesh portal functionalities simultaneously. The mesh nodes use different radios for mesh and access point functionalities, thus giving better service to client stations. Both reactive and proactive modes of HWMP are supported. The paper also suggests some measures to enhance the performance of the overall network by reducing the number of PREQs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a double gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi- classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The implementation of semiconductor circuits and systems in nano-technology makes it possible to achieve high speed, lower voltage level and smaller area. The unintended and undesirable result of this scaling is that it makes integrated circuits susceptible to soft errors normally caused by alpha particle or neutron hits. These events of radiation strike resulting into bit upsets referred to as single event upsets(SEU), become increasingly of concern for the reliable circuit operation in the field. Storage elements are worst hit by this phenomenon. As we further scale down, there is greater interest in reliability of the circuits and systems, apart from the performance, power and area aspects. In this paper we propose an improved 12T SEU tolerant SRAM cell design. The proposed SRAM cell is economical in terms of area overhead. It is easy to fabricate as compared to earlier designs. Simulation results show that the proposed cell is highly robust, as it does not flip even for a transient pulse with 62 times the Q(crit) of a standard 6T SRAM cell.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dynamic power dissipation due to redundant switching is an important metric in data-path design. This paper focuses on the use of ingenious operand isolation circuits for low power design. Operand isolation attempts to reduce switching by clamping or latching the output of a first level of combinational circuit. This paper presents a novel method using power supply switching wherein both PMOS and NMOS stacks of a circuit are connected to the same power supply. Thus, the output gets clamped or latched to the power supply value with minimal leakage. The proposed circuits make use of only two transistors to clamp the entire Multiple Input Multiple Output (MIMO) block. Also, the latch-based designs have higher drive strength in comparison to the existing methods. Simulation results have shown considerable area reduction in comparison to the existing techniques without increasing timing overhead.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, for the first time, the key design parameters of a shallow trench isolation-based drain-extended MOS transistor are discussed for RF power applications in advanced CMOS technologies. The tradeoff between various dc and RF figures of merit (FoMs) is carefully studied using well-calibrated TCAD simulations. This detailed physical insight is used to optimize the dc and RF behavior, and our work also provides a design window for the improvement of dc as well as RF FoMs, without affecting the breakdown voltage. An improvement of 50% in R-ON and 45% in RF gain is achieved at 1 GHz. Large-signal time-domain analysis is done to explore the output power capability of the device.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we report drain-extended MOS device design guidelines for the RF power amplifier (RF PA) applications. A complete RF PA circuit in a 28-nm CMOS technology node with the matching and biasing network is used as a test vehicle to validate the RF performance improvement by a systematic device design. A complete RF PA with 0.16-W/mm power density is reported experimentally. By simultaneous improvement of device-circuit performance, 45% improvement in the circuit RF power gain, 25% improvement in the power-added efficiency at 1-GHz frequency, and 5x improvement in the electrostatic discharge robustness are reported experimentally.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shallow-trench isolation drain extended pMOS (STI-DePMOS) devices show a distinct two-stage breakdown. The impact of p-well and deep-n-well doping profile on breakdown characteristics is investigated based on TCAD simulations. Design guidelines for p-well and deep-n-well doping profile are developed to shift the onset of the first-stage breakdown to a higher drain voltage and to avoid vertical punch-through leading to early breakdown. An optimal ratio between the OFF-state breakdown voltage and the ON-state resistance could be obtained. Furthermore, the impact of p-well/deep-n-well doping profile on the figure of merits of analog and digital performance is studied. This paper aids in the design of STI drain extended MOSFET devices for widest safe operating area and optimal mixed-signal performance in advanced system-on-chip input-output process technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new physically based classical continuous potential distribution model, particularly considering the channel center, is proposed for a short-channel undoped body symmetrical double-gate transistor. It involves a novel technique for solving the 2-D nonlinear Poisson's equation in a rectangular coordinate system, which makes the model valid from weak to strong inversion regimes and from the channel center to the surface. We demonstrated, using the proposed model, that the channel potential versus gate voltage characteristics for the devices having equal channel lengths but different thicknesses pass through a single common point (termed ``crossover point''). Based on the potential model, a new compact model for the subthreshold swing is formulated. It is shown that for the devices having very high short-channel effects (SCE), the effective subthreshold slope factor is mainly dictated by the potential close to the channel center rather than the surface. SCEs and drain-induced barrier lowering are also assessed using the proposed model and validated against a professional numerical device simulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form using digitally reconfigurable ring oscillator (RO). Solving a system of linear equations with different configuration setting of the RO gives delay of an individual gate. Experimental results from a test chip in 65nm process node show the feasibility of measuring the delay of an individual inverter to within 1pS accuracy. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 26% indicating the large impact of local or within-die variations.