13 resultados para amyloid deposits

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of an algorithm shows that maximum uniformity of film thickness on a rotating substrate is achieved for a normalized source-to-substrate distance ratio, h/r =1.183.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phyllite deposit of Degana, Rajasthan, containing tungsten values in the form of wolframite, (Fe, MnWO sub 4 ) finely dispersed in the quartz groundmass, has been quantitatively analysed to give 0.063% WO sub 3 , 6.66% Fe sub 2 O sub 3 , 14.30% Al sub 2 O sub 3 and 67.4% SiO sub 2 . The major gangue minerals identified are quartz, iron oxides and mica along with minor amounts of graphite, fluorite and sulphides. The amenability of the ore to gravity concentration, magnetic separation and a combination of the processes has been studied. A combination of tabling on --100 mesh ground ore and dry magnetic separation of the tabled concentrate gave a final concentrate containing 1.834% WO sub 3 with an overall recovery of only 4.6%. The complex mineralogy combined with fine dispersion of very low W values have contributed to the low recoveries and grades. Graph, photomicrographs. 10 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biphenyl ethers (BPEs) are the potent inhibitors of TTR fibril formation and are efficient fibril disrupter. However, the mechanism by which the fibril disruption occurs is yet to be fully elucidated. To gain insight into the mechanism, we synthesized and used a new QD labeled BPE to track the process of fibril disruption. Our studies showed that the new BPE-QDs bind to the fiber uniformly and has affinity and specificity for TTR fiber and disrupted the pre-formed fiber at a relatively slow rate. Based on these studies we put forth the probable mechanism of fiber disruption by BPEs. Also, we show here that the BPE-QDs interact with high affinity to the amyloids of A beta(42), lysozyme and insulin. The potential of BPE-QDs in the detection of senile plaque in the brain of transgenic Alzheimer's mice has also been explored. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like L-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculated phase relations in the system MnOSi02-C02-02 were used to propose a thermodynamic explanation for the thermal metamorphism of rhodochrosite beds lying between chert strata. The metamorphic MnOS i 0 2 minerals are arranged in order quartz(chert), rhodonite. tephroite and manganosite-hausmannite-pyrochroite rhodonite across the ore bed. The calculation covered temperatures up to 1000 K and pressures up to 5 kb. The zoning was interpreted as the result of a continuous rise in metamorphic temperature. The equilibrium partner of rhodochrosite changed from rhodonite through manganosite. Across the ore bed there are gradients in the chemical potential of MnO and SiO2 but fugacities of volatlle components such as C02. 02 and H20 were probably uniform at any given time and location during formation of the zones. Assuming that the total pressure and the fugacity of C02 were at 1.4 kb and 1.0 1 b. respectively. rhodonite. tephroite and manganosite would have formed at 472. 478 and 629 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

hIAPP fibrillization implicated in Type 2 diabetes pathology involves formation of oligomers toxic to insulin producing pancreatic beta-cells. We report design, synthesis, 3D structure and functional characterization of dehydrophenylalanine (Delta F) containing peptides which inhibit hIAPP fibrillization. The inhibitor protects beta-cells from hIAPP induced toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in A (amyloid ) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal A fragments, DAEFRHDSGYEV (A12) and DAEFRHDSGYEVHHQK (A16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with A12 and A16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in A12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation-prone (N*) states, which are rarely populated under force free native conditions but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration (C]), mechanical force (f), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive N* states. Interestingly, the phase boundaries separating the folded and unfolded states at all C] and f fall on a master curve, which can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (R), which are accessible in pulling experiments, (R), reveal the presence of a native-like N* with a disordered solvent-exposed amino-terminal beta-strand. The structure of the N* state is identical with that found in Fyn SH3 by NMR dispersion experiments. We show that the timescale for fibril formation can be estimated from the population of the N* state, determined by the free energy gap separating the native structure and the N* state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the N* state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2004 earthquake left several traces of coseismic land deformation and tsunami deposits, both on the islands along the plate boundary and distant shores of the Indian Ocean rim countries. Researchers are now exploring these sites to develop a chronology of past events. Where the coastal regions are also inundated by storm surges, there is an additional challenge to discriminate between the deposits formed by these two processes. Paleo-tsunami research relies largely on finding deposits where preservation potential is high and storm surge origin can be excluded. During the past decade of our work along the Andaman and Nicobar Islands and the east coast of India, we have observed that the 2004 tsunami deposits are best preserved in lagoons, inland streams and also on elevated terraces. Chronological evidence for older events obtained from such sites is better correlated with those from Thailand, Sri Lanka and Indonesia, reiterating their usefulness in tsunami geology studies. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-beta(40) (A beta(40)), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a beta-turn, flanked by two beta-sheet regions. We use solid-state NMR data to confirm the presence of the beta-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic A beta fibrils. Significantly, this allows a ``porin'' like beta-barrel structure, providing a structural basis for proposed mechanisms of A beta oligomer toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is aimed to delineate groundwater sources in Holocene deposits area in the Gulf of Mannar Coast from Southern India. For this purpose 2-D electrical resistivity tomography (ERT), hydrochemical and granulomerical studies were carried out and integrated to identify hydrogeological structures and portable groundwater resource in shallow depths which in general appears in the coastal tracts. The 2-D ERT was used to determine the two-dimensional subsurface geological formations by multicore cable with Wenner array. Low resistivity of 1-5 Omega m for saline water appeared due to calcite at the depth of about 5 m below the ground level (bgl). Sea water intrusion was observed around the maximum resistivity as 5 Omega m at the 8 m depth, bgl in the calcite environs, but the calcareous sandstone layer shows around 15-64 Omega m at the 6 m depth, bgl. The hydrochemical variation of TDS, HCO3-, Cl-, Na+, K+, Ca2+, and Mg2+ concentrations was observed for the saline and sea water intrusion in the groundwater system. The granulometic analysis shows that the study area was under the sea between 5400 and 3000 year ago. The events of ice melting an unnatural ice-stone rain/hail among 5000-4000 years ago resulted in the inundation of sea over the area and deposits of late Holocene marine transgression formation up to Puthukottai quartzite region for a stretch of around 17 km.