74 resultados para actuator fault

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiprocessor systems which afford a high degree of parallelism are used in a variety of applications. The extremely stringent reliability requirement has made the provision of fault-tolerance an important aspect in the design of such systems. This paper presents a review of the various approaches towards tolerating hardware faults in multiprocessor systems. It. emphasizes the basic concepts of fault tolerant design and the various problems to be taken care of by the designer. An indepth survey of the various models, techniques and methods for fault diagnosis is given. Further, we consider the strategies for fault-tolerance in specialized multiprocessor architectures which have the ability of dynamic reconfiguration and are suited to VLSI implementation. An analysis of the state-óf-the-art is given which points out the major aspects of fault-tolerance in such architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fault-tolerant multiprocessor (ftmp) is a bus-based multiprocessor architecture with real-time and fault- tolerance features and is used in critical aerospace applications. A preliminary performance evaluation is of crucial importance in the design of such systems. In this paper, we review stochastic Petri nets (spn) and developspn-based performance models forftmp. These performance models enable efficient computation of important performance measures such as processing power, bus contention, bus utilization, and waiting times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced Scan design can significantly improve the fault coverage for two pattern delay tests at the cost of exorbitantly high area overhead. The redundant flip-flops introduced in the scan chains have traditionally only been used to launch the two-pattern delay test inputs, not to capture tests results. This paper presents a new, much lower cost partial Enhanced Scan methodology with both improved controllability and observability. Facilitating observation of some hard to observe internal nodes by capturing their response in the already available and underutilized redundant flip-flops improves delay fault coverage with minimal or almost negligible cost. Experimental results on ISCAS'89 benchmark circuits show significant improvement in TDF fault coverage for this new partial enhance scan methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is now realised (1,2,3) that a knowledge of stacking fault energy is fundamental for an understanding of the mechanical behaviour of metals. There are several processes in which the imperfect dislocations have to recombine locally to form an unextended dislocation . For intersection of two dislocations it is, for example, necessary to form 'constrictions'. Cross slip of extended dislocations also involves constriction. The onset of stage llI work hardening in a crystal with close-packed structure is attributed to cross slip and hence is controlled by the stacking fault energy (SPE). Methods of estimation of SFE are based on either the direct observation of stacking faults in an electron microscope or their effects on the deformation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new approach to the location of fault in the high voltage power transmission system using Support Vector Machines (SVMs). A knowledge base is developed using transient stability studies for apparent impedance swing trajectory in the R-X plane. SVM technique is applied to identify the fault location in the system. Results are presented on sample 3-power station, a 9-bus system illustrate the implementation of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hazards associated with major accident hazard (MAN) industries are fire, explosion and toxic gas releases. Of these, toxic gas release is the worst as it has the potential to cause extensive fatalities. Qualitative and quantitative hazard analyses are essential for the identification and quantification of these hazards related to chemical industries. Fault tree analysis (FTA) is an established technique in hazard identification. This technique has the advantage of being both qualitative and quantitative, if the probabilities and frequencies of the basic events are known. This paper outlines the estimation of the probability of release of chlorine from storage and filling facility of chlor-alkali industry using FTA. An attempt has also been made to arrive at the probability of chlorine release using expert elicitation and proven fuzzy logic technique for Indian conditions. Sensitivity analysis has been done to evaluate the percentage contribution of each basic event that could lead to chlorine release. Two-dimensional fuzzy fault tree analysis (TDFFTA) has been proposed for balancing the hesitation factor involved in expert elicitation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.